Gotowa bibliografia na temat „Large Language Models (LLMs)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Large Language Models (LLMs)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Large Language Models (LLMs)"
Zhang, Tianyi, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown i Tatsunori B. Hashimoto. "Benchmarking Large Language Models for News Summarization". Transactions of the Association for Computational Linguistics 12 (2024): 39–57. http://dx.doi.org/10.1162/tacl_a_00632.
Pełny tekst źródłaHamaniuk, Vita A. "The potential of Large Language Models in language education". Educational Dimension 5 (9.12.2021): 208–10. http://dx.doi.org/10.31812/ed.650.
Pełny tekst źródłaYang, Jidong. "Large language models privacy and security". Applied and Computational Engineering 76, nr 1 (16.07.2024): 177–88. http://dx.doi.org/10.54254/2755-2721/76/20240584.
Pełny tekst źródłaHuang, Dawei, Chuan Yan, Qing Li i Xiaojiang Peng. "From Large Language Models to Large Multimodal Models: A Literature Review". Applied Sciences 14, nr 12 (11.06.2024): 5068. http://dx.doi.org/10.3390/app14125068.
Pełny tekst źródłaKumar, Deepak, Yousef Anees AbuHashem i Zakir Durumeric. "Watch Your Language: Investigating Content Moderation with Large Language Models". Proceedings of the International AAAI Conference on Web and Social Media 18 (28.05.2024): 865–78. http://dx.doi.org/10.1609/icwsm.v18i1.31358.
Pełny tekst źródłaPendyala, Vishnu S., i Christopher E. Hall. "Explaining Misinformation Detection Using Large Language Models". Electronics 13, nr 9 (26.04.2024): 1673. http://dx.doi.org/10.3390/electronics13091673.
Pełny tekst źródłaCheng, Jerome. "Applications of Large Language Models in Pathology". Bioengineering 11, nr 4 (31.03.2024): 342. http://dx.doi.org/10.3390/bioengineering11040342.
Pełny tekst źródłaChu, Zhibo, Zichong Wang i Wenbin Zhang. "Fairness in Large Language Models: A Taxonomic Survey". ACM SIGKDD Explorations Newsletter 26, nr 1 (24.07.2024): 34–48. http://dx.doi.org/10.1145/3682112.3682117.
Pełny tekst źródłaLin, Hsiao-Ying, i Jeffrey Voas. "Lower Energy Large Language Models (LLMs)". Computer 56, nr 10 (październik 2023): 14–16. http://dx.doi.org/10.1109/mc.2023.3278160.
Pełny tekst źródłaLong, Robert. "Introspective Capabilities in Large Language Models". Journal of Consciousness Studies 30, nr 9 (30.09.2023): 143–53. http://dx.doi.org/10.53765/20512201.30.9.143.
Pełny tekst źródłaRozprawy doktorskie na temat "Large Language Models (LLMs)"
Labeau, Matthieu. "Neural language models : Dealing with large vocabularies". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS313/document.
Pełny tekst źródłaThis work investigates practical methods to ease training and improve performances of neural language models with large vocabularies. The main limitation of neural language models is their expensive computational cost: it depends on the size of the vocabulary, with which it grows linearly. Despite several training tricks, the most straightforward way to limit computation time is to limit the vocabulary size, which is not a satisfactory solution for numerous tasks. Most of the existing methods used to train large-vocabulary language models revolve around avoiding the computation of the partition function, ensuring that output scores are normalized into a probability distribution. Here, we focus on sampling-based approaches, including importance sampling and noise contrastive estimation. These methods allow an approximate computation of the partition function. After examining the mechanism of self-normalization in noise-contrastive estimation, we first propose to improve its efficiency with solutions that are adapted to the inner workings of the method and experimentally show that they considerably ease training. Our second contribution is to expand on a generalization of several sampling based objectives as Bregman divergences, in order to experiment with new objectives. We use Beta divergences to derive a set of objectives from which noise contrastive estimation is a particular case. Finally, we aim at improving performances on full vocabulary language models, by augmenting output words representation with subwords. We experiment on a Czech dataset and show that using character-based representations besides word embeddings for output representations gives better results. We also show that reducing the size of the output look-up table improves results even more
Zervakis, Georgios. "Enriching large language models with semantic lexicons and analogies". Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0039.
Pełny tekst źródłaRecent advances in deep learning and neural networks have made it possible to address complex natural language processing tasks, which find application in a plethora of real-world problems ranging from smart assistants in mobile devices to the prediction of cancer. Nonetheless, modern systems based on these frameworks exhibit various limitations that may compromise their performance and trustworthiness, render them unfair towards minorities, or subject them to privacy leakage. It is our belief that integrating symbolic knowledge and reasoning into the deep learning framework is a necessary step towards addressing the aforementioned limitations. For example, lexical resources can enrich deep neural networks with semantic or syntactic knowledge, and logical rules can provide learning and reasoning mechanisms. Therefore, the scope of this thesis is to develop and evaluate ways of integrating different types of symbolic knowledge and reasoning into a widely used language model, Bidirectional Encoder Representations from Transformers (BERT). ln a first stage, we consider retrofitting, a simple and popular technique for refining distributional word embeddings based on relations coming from a semantic lexicon. Inspired by this technique, we present two methods for incorporating this knowledge into BERT contextualized embeddings. We evaluate these methods on three biomedical datasets for relation extraction and one movie review dataset for sentiment analysis, and show that they do not substantially impact the performance for these tasks. Furthermore, we conduct a qualitative analysis to provide further insights on this negative result. ln a second stage, we integrate analogical reasoning with BERT as a means to improve its performance on the target sense verification task, and make it more robust. To do so, we reformulate target sense verification as an analogy detection task. We present a hybrid model that combines BERT to encode the input data into quadruples and a convolutional neural classifier to decide whether they constitute valid analogies. We test our system on a benchmark dataset, and show that it can outperform existing approaches. Our empirical study shows the importance of the input encoding for BERT, and how this dependence gets alleviated by integrating the axiomatic properties of analogies during training, while preserving performance and improving robustness
Chadha, Vikrampal. "Simulation of large-scale system-level models". Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-12162009-020334/.
Pełny tekst źródłaHittner, Brian Edward. "Rendering large-scale terrain models and positioning objects in relation to 3D terrain". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Dec%5FHittner.pdf.
Pełny tekst źródłaThesis advisor(s): Don Brutzman, Curt Blais. Includes bibliographical references (p. 117-118). Also available online.
Kropff, Emilio. "Statistical and dynamical properties of large cortical network models: insights into semantic memory and language". Doctoral thesis, SISSA, 2007. http://hdl.handle.net/20.500.11767/4639.
Pełny tekst źródłaZhao, Ying, i ying zhao@rmit edu au. "Effective Authorship Attribution in Large Document Collections". RMIT University. Computer Science and Information Technology, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080730.162501.
Pełny tekst źródłaPan, Bi-Yu. "Hierarchical test generation for VHDL behavioral models". Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-09052009-040449/.
Pełny tekst źródłaWest, James F. "An examination of the application of design metrics to the development of testing strategies in large-scale SDL models". Virtual Press, 2000. http://liblink.bsu.edu/uhtbin/catkey/1191725.
Pełny tekst źródłaDepartment of Computer Science
Kapoor, Shekhar. "Process level test generation for VHDL behavioral models". Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-05022009-040753/.
Pełny tekst źródłaNarayanaswamy, Sathyanarayanan. "Development of VHDL behavioral models with back annotated timing". Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-06112009-063442/.
Pełny tekst źródłaKsiążki na temat "Large Language Models (LLMs)"
Amaratunga, Thimira. Understanding Large Language Models. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/979-8-8688-0017-7.
Pełny tekst źródłaMartra, Pere. Large Language Models Projects. Berkeley, CA: Apress, 2024. http://dx.doi.org/10.1007/979-8-8688-0515-8.
Pełny tekst źródłaKucharavy, Andrei, Octave Plancherel, Valentin Mulder, Alain Mermoud i Vincent Lenders, red. Large Language Models in Cybersecurity. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54827-7.
Pełny tekst źródłaKamath, Uday, Kevin Keenan, Garrett Somers i Sarah Sorenson. Large Language Models: A Deep Dive. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-65647-7.
Pełny tekst źródłaGrigorov, Dilyan. Introduction to Python and Large Language Models. Berkeley, CA: Apress, 2024. http://dx.doi.org/10.1007/979-8-8688-0540-0.
Pełny tekst źródłaTörnberg, Petter. How to Use Large-Language Models for Text Analysis. 1 Oliver’s Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications Ltd, 2024. http://dx.doi.org/10.4135/9781529683707.
Pełny tekst źródłaLewis, Carroll. Through the looking glass. San Diego, CA: ICON Classics, 2005.
Znajdź pełny tekst źródłaCzęści książek na temat "Large Language Models (LLMs)"
Amaratunga, Thimira. "Popular LLMs". W Understanding Large Language Models, 119–30. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/979-8-8688-0017-7_5.
Pełny tekst źródłaRuiu, Dragos. "LLMs Red Teaming". W Large Language Models in Cybersecurity, 213–23. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54827-7_24.
Pełny tekst źródłaAmaratunga, Thimira. "What Makes LLMs Large?" W Understanding Large Language Models, 81–117. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/979-8-8688-0017-7_4.
Pełny tekst źródłaMartra, Pere. "Vector Databases and LLMs". W Large Language Models Projects, 31–62. Berkeley, CA: Apress, 2024. http://dx.doi.org/10.1007/979-8-8688-0515-8_2.
Pełny tekst źródłaKucharavy, Andrei. "Overview of Existing LLM Families". W Large Language Models in Cybersecurity, 31–44. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54827-7_3.
Pełny tekst źródłaWürsch, Maxime, Dimitri Percia David i Alain Mermoud. "Monitoring Emerging Trends in LLM Research". W Large Language Models in Cybersecurity, 153–61. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54827-7_17.
Pełny tekst źródłaKamath, Uday, Kevin Keenan, Garrett Somers i Sarah Sorenson. "Multimodal LLMs". W Large Language Models: A Deep Dive, 375–421. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-65647-7_9.
Pełny tekst źródłaKucharavy, Andrei. "Fundamental Limitations of Generative LLMs". W Large Language Models in Cybersecurity, 55–64. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54827-7_5.
Pełny tekst źródłaMeier, Raphael. "LLM-Aided Social Media Influence Operations". W Large Language Models in Cybersecurity, 105–12. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54827-7_11.
Pełny tekst źródłaSchillaci, Zachary. "LLM Adoption Trends and Associated Risks". W Large Language Models in Cybersecurity, 121–28. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54827-7_13.
Pełny tekst źródłaStreszczenia konferencji na temat "Large Language Models (LLMs)"
Coppolillo, Erica, Francesco Calimeri, Giuseppe Manco, Simona Perri i Francesco Ricca. "LLASP: Fine-tuning Large Language Models for Answer Set Programming". W 21st International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}, 834–44. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/kr.2024/78.
Pełny tekst źródłaZhang, Duzhen, Yahan Yu, Jiahua Dong, Chenxing Li, Dan Su, Chenhui Chu i Dong Yu. "MM-LLMs: Recent Advances in MultiModal Large Language Models". W Findings of the Association for Computational Linguistics ACL 2024, 12401–30. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-acl.738.
Pełny tekst źródłaZolnai-Lucas, Aaron, Jack Boylan, Chris Hokamp i Parsa Ghaffari. "STAGE: Simplified Text-Attributed Graph Embeddings using Pre-trained LLMs". W Proceedings of the 1st Workshop on Knowledge Graphs and Large Language Models (KaLLM 2024), 92–104. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.kallm-1.10.
Pełny tekst źródłaBarek, MD Abdul, Md Mostafizur Rahman, Shapna Akter, A. B. M. Kamrul Islam Riad, Md Abdur Rahman, Hossain Shahriar, Akond Rahman i Fan Wu. "Mitigating Insecure Outputs in Large Language Models(LLMs): A Practical Educational Module". W 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC), 2424–29. IEEE, 2024. http://dx.doi.org/10.1109/compsac61105.2024.00389.
Pełny tekst źródłaKotkar, Aishwarya D., Radhakrushna S. Mahadik, Piyush G. More i Sandeep A. Thorat. "Comparative Analysis of Transformer-based Large Language Models (LLMs) for Text Summarization". W 2024 1st International Conference on Advanced Computing and Emerging Technologies (ACET), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/acet61898.2024.10730348.
Pełny tekst źródłaGurgurov, Daniil, Mareike Hartmann i Simon Ostermann. "Adapting Multilingual LLMs to Low-Resource Languages with Knowledge Graphs via Adapters". W Proceedings of the 1st Workshop on Knowledge Graphs and Large Language Models (KaLLM 2024), 63–74. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.kallm-1.7.
Pełny tekst źródłaWasi, Azmine Toushik. "HRGraph: Leveraging LLMs for HR Data Knowledge Graphs with Information Propagation-based Job Recommendation". W Proceedings of the 1st Workshop on Knowledge Graphs and Large Language Models (KaLLM 2024), 56–62. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.kallm-1.6.
Pełny tekst źródłaCao, Ye. "Optimizing Style Recognition Algorithm for Digital Art Images Using Large Language Models (LLMs)". W 2024 5th International Conference on Electronics and Sustainable Communication Systems (ICESC), 1536–42. IEEE, 2024. http://dx.doi.org/10.1109/icesc60852.2024.10689850.
Pełny tekst źródłaAlipour, Hanieh, Nick Pendar i Kohinoor Roy. "ChatGPT Alternative Solutions: Large Language Models Survey". W 5th International Conference on Networks, Blockchain and Internet of Things. Academy & Industry Research Collaboration Center, 2024. http://dx.doi.org/10.5121/csit.2024.1405114.
Pełny tekst źródłaMa, Kevin, Daniele Grandi, Christopher McComb i Kosa Goucher-Lambert. "Conceptual Design Generation Using Large Language Models". W ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/detc2023-116838.
Pełny tekst źródłaRaporty organizacyjne na temat "Large Language Models (LLMs)"
Alonso-Robisco, Andres, i Jose Manuel Carbo. Analysis of CBDC Narrative OF Central Banks using Large Language Models. Madrid: Banco de España, sierpień 2023. http://dx.doi.org/10.53479/33412.
Pełny tekst źródłaMarra de Artiñano, Ignacio, Franco Riottini Depetris i Christian Volpe Martincus. Automatic Product Classification in International Trade: Machine Learning and Large Language Models. Inter-American Development Bank, lipiec 2023. http://dx.doi.org/10.18235/0005012.
Pełny tekst źródłaMaerz, Seraphine. Using AI for Text Analysis in R. Instats Inc., 2024. http://dx.doi.org/10.61700/ti5uexui5ilrd1663.
Pełny tekst źródłaAzuara Herrera, Oliver, Laura Ripani i Eric Torres Ramirez. AI and the Increase of Productivity and Labor Inequality in Latin America: Potential Impact of Large Language Models on Latin American Workforce. Inter-American Development Bank, wrzesień 2024. http://dx.doi.org/10.18235/0013152.
Pełny tekst źródłaKorinek, Anton, i Jai Vipra. Concentrating Intelligence: Scaling and Market Structure in Artificial Intelligence. Institute for New Economic Thinking Working Paper Series, październik 2024. http://dx.doi.org/10.36687/inetwp228.
Pełny tekst źródłaWagner, Rudolf. Enforcing Software and AI as Medical Devices: Expert Witness Insights on Civil Lawsuits, Regulation, and Legal Liability Pathways. ADHOCON UG (haftungsbeschränkt), październik 2024. http://dx.doi.org/10.70317/2024.13rw10.
Pełny tekst źródłaWagner, Rudolf. Enforcing Software and AI as Medical Devices: Expert Witness Insights on Civil Lawsuits, Regulation, and Legal Liability Pathways. ADHOCON UG (haftungsbeschraenkt), październik 2024. http://dx.doi.org/10.70317/2024.20rw10.
Pełny tekst źródłaZhang, Hao. Large Language Model (LLM) Monthly Report (2024 Apr). ResearchHub Technologies, Inc., maj 2024. http://dx.doi.org/10.55277/researchhub.0ps6xenm.
Pełny tekst źródłaTranchero, Matteo, Cecil-Francis Brenninkmeijer, Arul Murugan i Abhishek Nagaraj. Theorizing with Large Language Models. Cambridge, MA: National Bureau of Economic Research, październik 2024. http://dx.doi.org/10.3386/w33033.
Pełny tekst źródłaMoreno, Ángel Iván, i Teresa Caminero. Assessing the data challenges of climate-related disclosures in european banks. A text mining study. Madrid: Banco de España, wrzesień 2023. http://dx.doi.org/10.53479/33752.
Pełny tekst źródła