Gotowa bibliografia na temat „Lactic acid – Metabolism”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Lactic acid – Metabolism”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Lactic acid – Metabolism"

1

Pin, Carmen, Gonzalo D. García de Fernando i Juan A. Ordóñez. "Effect of Modified Atmosphere Composition on the Metabolism of Glucose by Brochothrix thermosphacta". Applied and Environmental Microbiology 68, nr 9 (wrzesień 2002): 4441–47. http://dx.doi.org/10.1128/aem.68.9.4441-4447.2002.

Pełny tekst źródła
Streszczenie:
ABSTRACT The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO2 percentages, glucose metabolism remained anaerobic under greater oxygen contents.
Style APA, Harvard, Vancouver, ISO itp.
2

Oh, Euhlim. "Dynamic Modeling of Lactic Acid Fermentation Metabolism with Lactococcus lactis". Journal of Microbiology and Biotechnology 21, nr 2 (luty 2011): 162–69. http://dx.doi.org/10.4014/jmb.1007.07066.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hugenholtz, Jeroen. "Citrate metabolism in lactic acid bacteria". FEMS Microbiology Reviews 12, nr 1-3 (wrzesień 1993): 165–78. http://dx.doi.org/10.1111/j.1574-6976.1993.tb00017.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Miller, O. Neal, i Gaetano Bazzano. "PROPANEDIOL METABOLISM AND ITS RELATION TO LACTIC ACID METABOLISM*". Annals of the New York Academy of Sciences 119, nr 3 (16.12.2006): 957–73. http://dx.doi.org/10.1111/j.1749-6632.1965.tb47455.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Porro, Danilo, Michele M. Bianchi, Luca Brambilla, Rossella Menghini, Davide Bolzani, Vittorio Carrera, Jefferson Lievense i in. "Replacement of a Metabolic Pathway for Large-Scale Production of Lactic Acid from Engineered Yeasts". Applied and Environmental Microbiology 65, nr 9 (1.09.1999): 4211–15. http://dx.doi.org/10.1128/aem.65.9.4211-4215.1999.

Pełny tekst źródła
Streszczenie:
ABSTRACT Interest in the production of l-(+)-lactic acid is presently growing in relation to its applications in the synthesis of biodegradable polymer materials. With the aim of obtaining efficient production and high productivity, we introduced the bovinel-lactate dehydrogenase gene (LDH) into a wild-type Kluyveromyces lactis yeast strain. The observed lactic acid production was not satisfactory due to the continued coproduction of ethanol. A further restructuring of the cellular metabolism was obtained by introducing the LDH gene into aK. lactis strain in which the unique pyruvate decarboxylase gene had been deleted. With this modified strain, in which lactic fermentation substituted completely for the pathway leading to the production of ethanol, we obtained concentrations, productivities, and yields of lactic acid as high as 109 g liter−1, 0.91 g liter−1 h−1, and 1.19 mol per mole of glucose consumed, respectively. The organic acid was also produced at pH levels lower than those usual for bacterial processes.
Style APA, Harvard, Vancouver, ISO itp.
6

Gänzle, Michael G. "Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage". Current Opinion in Food Science 2 (kwiecień 2015): 106–17. http://dx.doi.org/10.1016/j.cofs.2015.03.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Osborne, J. P., R. Mira de Orduña, G. J. Pilone i S. Q. Liu. "Acetaldehyde metabolism by wine lactic acid bacteria". FEMS Microbiology Letters 191, nr 1 (październik 2000): 51–55. http://dx.doi.org/10.1111/j.1574-6968.2000.tb09318.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

de Vos, Willem M., Michiel Kleerebezem i Oscar P. Kuipers. "Lactic acid bacteria — Genetics, metabolism and application". FEMS Microbiology Reviews 29, nr 3 (sierpień 2005): 391. http://dx.doi.org/10.1016/j.fmrre.2005.05.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

DEVOS, W., M. KLEEREBEZEM i O. KUIPERS. "Lactic acid bacteria – Genetics, metabolism and application". FEMS Microbiology Reviews 29, nr 3 (sierpień 2005): 391. http://dx.doi.org/10.1016/j.femsre.2005.05.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Matejčeková, Zuzana, Elena Dujmić, Denisa Liptáková i Ľubomír Valík. "Modeling of lactic acid fermentation of soy formulation with Lactobacillus plantarum HM1". Food Science and Technology International 25, nr 2 (4.10.2018): 141–49. http://dx.doi.org/10.1177/1082013218803257.

Pełny tekst źródła
Streszczenie:
Lactic acid bacteria alone or with special adjunct probiotic strains are inevitable for the preparation of various specific functional foods. Moreover, because of their growth and metabolism, the final products are preserved for a certain time. Thus, growth dynamics of the lactic acid bacteria of the Fresco DVS 1010 culture ( Lactococcus lactis spp. lactis, Lactococcus lactis spp. cremoris, Streptococcus salivarius spp. thermophilus) during liquid-state fermentation of soya mashes and pH values within the process were analyzed in this study. Although milk is the most typical growth medium for the lactic acid bacteria, presumable viable counts of Fresco culture reached levels 109 CFU ml−1 after 8 h, representing 2–3 log increase in comparison to initial state (specific growth rates ranged from 1.06 to 1.64 h−1). After 21 days of storage period, the pH levels in the products were reduced to 4.50–4.70, representing a decrease of about 1.5–1.7 units. All prepared soybean products contained detectable amounts of raffinose-series oligosaccharides (0.25–0.68 g per 100 g) that were reduced in average by about 30.5% during period of 21 days.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Lactic acid – Metabolism"

1

Newbold, Charles James. "Microbial metabolism of lactic acid in the rumen". Thesis, University of Glasgow, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235529.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Lee, R. J. "Lactic acid metabolism and lactate dehydrogenases of Vibrio species". Thesis, University of Portsmouth, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377561.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Bourniquel, Aude A. "Molecular insights into the metabolism and physiology of the lactic acid basterium "Lactobacillus delbrueckii" subsp. "lactis"". Basel : Universität Basel, 2000. http://www.unibas.ch/diss/2000/DissB_6242.htm.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Furumoto, Hidehiro. "Studies on Nutraceutical Properties of Modified Fatty Acids by Autoxidation and Lactic Acid Bacterial Metabolism". Kyoto University, 2016. http://hdl.handle.net/2433/215592.

Pełny tekst źródła
Streszczenie:
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第19766号
農博第2162号
新制||農||1040(附属図書館)
学位論文||H28||N4982(農学部図書室)
32802
京都大学大学院農学研究科応用生物科学専攻
(主査)教授 菅原 達也, 教授 澤山 茂樹, 教授 佐藤 健司
学位規則第4条第1項該当
Style APA, Harvard, Vancouver, ISO itp.
5

Takeuchi, Michiki. "Biochemical and applied studies on unsaturated fatty acid metabolisms in lactic acid bacteria". Kyoto University, 2015. http://hdl.handle.net/2433/199370.

Pełny tekst źródła
Streszczenie:
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第19046号
農博第2124号
新制||農||1032(附属図書館)
学位論文||H27||N4928(農学部図書室)
31997
京都大学大学院農学研究科応用生命科学専攻
(主査)教授 小川 順, 教授 加納 健司, 教授 植田 充美
学位規則第4条第1項該当
Style APA, Harvard, Vancouver, ISO itp.
6

Loat, Christopher Eino Russell. "Comparison of the lactate and ventilatory thresholds during prolonged work". Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/30153.

Pełny tekst źródła
Streszczenie:
The purpose of this investigation was to compare the ventilatory threshold (T(vent)) with the lactate threshold (T(lact)) during 60 minutes of steady-state exercise at the calculated thresholds. Eight trained, male cyclists (mean age=23.3 yrs, ht=176.4 cm, wt=70.7 kg, VO₂max=61.02 ml/kg‧minˉ¹) performed a 23 W/min progressive intensity cycling test for determination of T(lact) and T(vent). T(vent) was determined by the non-linear increase in excess CO₂ (ExCO₂) while T(lact) was calculated by the 'individual anaerobic threshold' (IAT) method. Subsequently, subjects performed up to 60 minutes steady-state exercise at the threshold workloads. Results at T(vent) and T(lact) indicate significant differences (p<0.01; T(lact)>T(vent)) between VO₂, ExCO₂, HR, [BLa] and workload as calculated by Hotelling's T²-test. During the steady state exercise at each specified workload, VO₂, [BLa], heart rate and ExCO₂ were measured at 15 minute intervals. All subjects completed the steady-state exercise at T(vent) (VSS) while only 2 subjects completed the steady-state exercise at T(lact) (LSS) (avg time=48.4 min). Comparison of metabolic variables using MANOVA and multiple comparisons revealed significant differences between VSS and LSS for HR and VO₂ at all time intervals, for [BLa] at 30 and 45 minute intervals and for ExCO₂ at the 30 minute interval. Furthermore, examination of [BLa] over time using trend analysis revealed a stabilization during VSS ([formula omitted]=3.05 mmol‧Lˉ¹) whereas [BLa] continuously increased over time during LSS. Findings indicate that T(lact) (IAT method) overestimates the ability to perform prolonged work over 45 min. while T(vent) (ExCO) allows for steady-state exercise greater than 60 minutes.
Education, Faculty of
Curriculum and Pedagogy (EDCP), Department of
Graduate
Style APA, Harvard, Vancouver, ISO itp.
7

Whitley, Katherine. "Phenotypic variants of lactic acid bacteria, their metabolism and relevance to probiotic criteria". Thesis, University of Huddersfield, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323780.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Yamazaki, Shinichi. "Bioelectrochemical analysis on quinone-induced modification of the metabolism in bifidobacteria and lactic acid bacteria". Kyoto University, 2002. http://hdl.handle.net/2433/149899.

Pełny tekst źródła
Streszczenie:
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第9608号
農博第1236号
新制||農||841(附属図書館)
学位論文||H14||N3640(農学部図書室)
UT51-2002-G366
京都大学大学院農学研究科応用生命科学専攻
(主査)教授 池田 篤治, 教授 清水 昌, 教授 加藤 暢夫
学位規則第4条第1項該当
Style APA, Harvard, Vancouver, ISO itp.
9

Weber, Jean-Michel. "Lactate turnover in fast-moving vertebrates : the control of plasma metabolite fluxes". Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/27561.

Pełny tekst źródła
Streszczenie:
During sustained exercise, working muscles must be supplied with adequate kinds and amounts of exogenous fuels, and the delivery rates of oxygen and oxidizable substrates should be matched. The study of metabolite fluxes and their regulation is therefore critical to the understanding of exercise metabolism. Lactate has received renewed attention from physiologists and biochemists with the realization that it is not only an end product of glycolysis, but also an important fuel for aerobic work. As an oxidizable fuel, this substrate may provide some performance advantage over other fuels such as glucose and free fatty acids. The goals of this thesis were: 1) to determine whether endurance-adapted animals can support higher plasma lactate turnover rates than sedentary animals; and 2) to investigate the major factors involved in the regulation of plasma metabolite turnover at the whole-organism level - using lactate as a model. Lactate turnover rates were measured by bolus injection of [U-¹⁴C]lactate in skipjack tuna, Katsuwonus pelamis, and in thoroughbred racehorses, Equus caballus. In tuna, turnover rates ranged from 112 to 431 umol min⁻¹ kg⁻¹ and they were positively correlated with lactate concentration (slope = 15.1, r = 0.92). This teleost is able to support higher plasma lactate turnover rates than expected for a mammalian lower temperature, and lactate is probably an important oxidizable fuel in this species. For comparative purposes, resting turnover rates of lactate and glucose were plotted versus body mass on a log-log scale for a wide range of mammalian species. These plots were linear, and they showed the same slope as the classic body mass vs metabolic rate relationship. Thoroughbred horses are likely to have an aerobic scope of 40-fold or more. One of their main physiological adaptations to exercise is the ability to increase hematocrit by more than one and a half-fold in response to exercise. In the present study, this adjustment allowed them to reach an A-V difference in 0₂ content of more than 23 vol% during maximal exercise, a much higher value than other mammals. Their lactate turnover rate and cardiac output were measured at rest and two levels of submaximal exercise (45 and 55 V0₂ max) to investigate the relationship between cardiovascular adjustments on plasma lactate turnover rate. Cardiac output ranged from 106 to 571 ml min⁻¹ kg⁻¹, and mean lactate turnover rate from 9.3 at rest, to 75.9 umol min⁻¹ kg⁻¹ at 55% V0₂ max. In contrast with the situation found in tuna, the lactate turnover rates of thoroughbreds were not elevated compared with other mammals, showing that the metabolic adaptations of these outstanding athletes do not include the ability to sustain higher lactate fluxes than sedentary animals. In horses, the contribution of plasma lactate oxidation to V0₂ is minimal, and this substrate is not an important oxidative fuel; lipid oxidation may represent their major pathway for aerobic energy production during exercise. The ability to oxidize plasma lactate at high rates is therefore not necessarily required for the "elite" performance of endurance exercise. This study also shows that both, plasma lactate concentration and cardiac output are positively correlated with turnover rate. The correlation between cardiac output and lactate turnover rate is independent of the relationship between plasma lactate concentration and turnover rate. Plasma metabolite concentration and cardiac output can be regulators of plasma metabolite turnover rate. It is proposed that these two variables are, respectively, the fine and coarse controls for flux rate adjustments during exercise.
Science, Faculty of
Zoology, Department of
Graduate
Style APA, Harvard, Vancouver, ISO itp.
10

Vukovich, Matthew D. "Effect of L-carnitine supplementation on muscle glycogen utilization and lactate accumulation during cycle exercise". Virtual Press, 1993. http://liblink.bsu.edu/uhtbin/catkey/862276.

Pełny tekst źródła
Streszczenie:
Two experiments were done to study the effects of L-carnitine supplementation (CNsup) during exercise. EXP 1, examined the effect of CNsup on lipid oxidation and muscle glycogen utilization during submaximal EX. Triglycerides were elevated by a fat feeding (90g fat), 3 h later subjects cycled for 60 min at 70% VO2max (CON). Muscle biopsies were obtained preEX, after 30 and 60 min of EX. Blood samples were taken preEX and every 15 min of EX. Subjects randomly completed two additional trials following 7 and 14 days of CNsup (6 g/day). During one of the trials, subjects received 2000 units of heparin 15 min prior to EX to elevate FFA (CNhep). There were no differences in V02, RER, HR, g of CHO and fat oxidized among the three trials. Serum total acid soluble (TASC) and free carnitine (FC) increased with CNsup (CON, 71.3 ± 2.9; CN, 92.8 ± 5.4; CNhep, 109.8 ± 3.5 mol·g'). Muscle carnitine concentration at rest was unaffected by CNsup. During EX, TASC did not change, FC decreased (p<0.05) and SCAC increased (p<0.05). With CNsup the decrease in FC was less (~50%) (p<0.05) and the increase in SCAC was greater (~200-300%) (p<0.05) compared to CON (free 65%; SCAC 150%). Pre and postEX muscle glycogens were not different. EXP 2, examined the effects of CNsup on blood lactate accumulation during maximal EX. Subjects cycled for 4 min at ~100% VO2max (CON). Exercise was repeated following 6 and 13 days of CNsup (6 g/day). Serum TASC and FC were elevated due to CNsup. Blood Lactate was measured prior to and 0, 3, 5, and 7 min postEX. CNsup resulted in less (p<0.05) lactate accumulation compared to CON. There were no differences between DAY-6 and DAY-13.
Human Performance Laboratory
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Lactic acid – Metabolism"

1

Venema, G., J. H. J. Huis In ’t Veld i J. Hugenholtz, red. Lactic Acid Bacteria: Genetics, Metabolism and Applications. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1774-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Konings, W. N., O. P. Kuipers i J. H. J. Huis In ’t Veld, red. Lactic Acid Bacteria: Genetics, Metabolism and Applications. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2027-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Siezen, R. J., J. Kok, T. Abee i G. Schasfsma, red. Lactic Acid Bacteria: Genetics, Metabolism and Applications. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-2029-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Seppo, Salminen, i Wright Atte von 1952-, red. Lactic acid bacteria: Microbiology and functional aspects. Wyd. 2. New York: Marcel Dekker, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Seppo, Salminen, Wright Atte von 1952- i Ouwehand Arthur, red. Lactic acid bacteria: Microbiology and functional aspects. Wyd. 3. New York: Marcel Dekker, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Benninga, H. A history of lactic acid making: A chapter in the history of biotechnology. Dordrecht [Netherland]: Kluwer Academic Publishers, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Fernanda, Mozzi, Raya Raúl R i Vignolo Graciela M, red. Biotechnology of lactic acid bacteria: Novel applications. Ames, Iowa: Wiley-Blackwell, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lee, R. J. Lactic acid metabolism and lactate dehydrogenases of Vibrio species. Portsmouth: Portsmouth Polytechnic,School of Pharmacy..., 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Symposium, on Lactic Acid Bacteria: Genetics Metabolism and Applications (6th 1999 Veldhoven Netherlands). Lactic acid bacteria: Genetics, metabolism, and applications : proceedings of the Sixth Symposium on lactic acid bacteria: genetics, metabolism and applications, 19-23 September 1999, Veldhoven, The Netherlands. Dordrecht: Kluwer, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Mehler, Howard S. Lactic acid metabolism: A monograph on carbohydrate metabolism in the blood and brain of the suckling rat. Beverly Hills, Calif: Mehler Pub. Co., 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Lactic acid – Metabolism"

1

Stiles, Michael E. "Biopreservation by lactic acid bacteria". W Lactic Acid Bacteria: Genetics, Metabolism and Applications, 235–49. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1774-3_14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Vaughan, Elaine E., Michiel Kleerebezem i Willem M. de Vos. "Genetics of the Metabolism of Lactose and Other Sugars". W Genetics of Lactic Acid Bacteria, 95–119. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-7090-5_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Vaughan, Elaine E., Michiel Kleerebezem i Willem M. de Vos. "Genetics of the Metabolism of Lactose and Other Sugars". W Genetics of Lactic Acid Bacteria, 95–119. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0191-6_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Pederson, Jeffrey A., James L. Steele, Jeffrey E. Christensen i Edward G. Dudley. "Peptidases and amino acid catabolism in lactic acid bacteria". W Lactic Acid Bacteria: Genetics, Metabolism and Applications, 217–46. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2027-4_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Davidson, Barrie E., Nancy Kordias, Marian Dobos i Alan J. Hillier. "Genomic organization of lactic acid bacteria". W Lactic Acid Bacteria: Genetics, Metabolism and Applications, 65–87. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1774-3_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Yasui, Hisako, Kan Shida, Takeshi Matsuzaki i Teruo Yokokura. "Immunomodulatory function of lactic acid bacteria". W Lactic Acid Bacteria: Genetics, Metabolism and Applications, 383–89. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2027-4_24.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

van de Guchte, Maarten, Pascale Serror, Christian Chervaux, Tamara Smokvina, Stanislav D. Ehrlich i Emmanuelle Maguin. "Stress responses in lactic acid bacteria". W Lactic Acid Bacteria: Genetics, Metabolism and Applications, 187–216. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-2029-8_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Jolly, Laure, Sébastien J. F. Vincent, Philippe Duboc i Jean-Richard Neeser. "Exploiting exopolysaccharides from lactic acid bacteria". W Lactic Acid Bacteria: Genetics, Metabolism and Applications, 367–74. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-2029-8_26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Klaenhammer, Todd, Eric Altermann, Fabrizio Arigoni, Alexander Bolotin, Fred Breidt, Jeffrey Broadbent, Raul Cano i in. "Discovering lactic acid bacteria by genomics". W Lactic Acid Bacteria: Genetics, Metabolism and Applications, 29–58. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-2029-8_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kowalczyk, Magdalena, Baltasar Mayo, María Fernández i Tamara Aleksandrzak-Piekarczyk. "Updates on Metabolism in Lactic Acid Bacteria in Light of “Omic” Technologies". W Biotechnology of Lactic Acid Bacteria, 1–24. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118868386.ch1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Lactic acid – Metabolism"

1

Kottmann, R. Matthew, Ajit Kulkarni, Katie Smolnycki, Elizabeth Lyda, Thinesh Dahayanake, Jian Z. Hu, Rick P. Phipps i Patricia Sime. "Metabolomics Identifies Lactic Acid And Anaerobic Metabolism As Inducers Of Myofibroblast Differentiation". W American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a3482.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Harmening Pittiglio, D., i J. W. Glatzel. "PLATELET STORAGE AT 22°C: A BIOCHEMICAL EVALUATION". W XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644597.

Pełny tekst źródła
Streszczenie:
Blood platelets are an important component of transfusion therapy, especially for the thrombocytopenic patient. As a result, platelet storage has become an important issue. This study evaluated biochemical parameters of platelet concentrates (PC) that were prepared from whole blood drawn in CPDA-1. Seventeen PC's were stored for 7 days at 22°C in polyolefin containers (PL 732) with horizontal flatbed agitation. Samples were taken on days 1,3,5, and 7 of storage and analyzed. This study demonstrated a change from aerobic to anaerobic metabolism during the 7 days of platelet storage. PC's which utilized oxygen during storage were associated with a higher pCO2 and bicarbonate values, lower lactic acid levels and better maintenance of pH indicating active aerobic metabolism. During the 7 days of PC storage, a block in oxidative phosphosylation occurred which was reflected in increases in the pO2as well as increases in the lactic acid production, resulting in a depletion of available bicarbonate and a fall in pH. This study indicates that the fall in pH was not associated with increased pCO2values . A 29% decrease in ATP levels associated with an increase in the level of organic phosphate and plasma calcium was observed during storage. The study confirmed that changes in morphology are associated with a decrease in pH and increases in LDH levels during room temperature storage. This study demonstrated that several interrelated variables affect the pH of PC storage, and that oxidative phosphorylation is crucial to platelet metabolism and important in preventing adverse changes in pH.
Style APA, Harvard, Vancouver, ISO itp.
3

Afiati, Fifi, Fitri Setiyoningrum, Gunawan Priadi i Vania Qyasaty. "Quantification of Lactic Acid as Secondary Metabolite of Lactic Acid Bacteria Isolated from Milk and Its Derivatived Products". W The Food Ingredient Asia Conference (FiAC). SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0010546700003108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Skorupa Parachin, Nadia, Pollyne Lima, Nadielle Melo, Lucas Carvalho, Virgililio Castro, Gisele Menino i Beatriz Simas Magalhães. "Metabolic engineering of Pichia pastoris for L-lactic acid production using glycerin as carbon source". W Simpósio Nacional de Bioprocessos e Simpósio de Hidrólise Enzimática de Biomassa. Campinas - SP, Brazil: Galoá, 2015. http://dx.doi.org/10.17648/sinaferm-2015-33460.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Lactic acid – Metabolism"

1

Solberg, Thomas. Aspects of anuran metabolism : effects of chronic hypoxia on maximal oxygen uptake rates and the fate of lactic acid. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.3215.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii