Artykuły w czasopismach na temat „Known and Zero-Day Attacks Detection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Known and Zero-Day Attacks Detection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Nerella Sameera, M.Siva Jyothi, K.Lakshmaji i V.S.R.Pavan Kumar. Neeli. "Clustering based Intrusion Detection System for effective Detection of known and Zero-day Attacks". Journal of Advanced Zoology 44, nr 4 (2.12.2023): 969–75. http://dx.doi.org/10.17762/jaz.v44i4.2423.
Pełny tekst źródłaHindy, Hanan, Robert Atkinson, Christos Tachtatzis, Jean-Noël Colin, Ethan Bayne i Xavier Bellekens. "Utilising Deep Learning Techniques for Effective Zero-Day Attack Detection". Electronics 9, nr 10 (14.10.2020): 1684. http://dx.doi.org/10.3390/electronics9101684.
Pełny tekst źródłaOhtani, Takahiro, Ryo Yamamoto i Satoshi Ohzahata. "IDAC: Federated Learning-Based Intrusion Detection Using Autonomously Extracted Anomalies in IoT". Sensors 24, nr 10 (18.05.2024): 3218. http://dx.doi.org/10.3390/s24103218.
Pełny tekst źródłaHairab, Belal Ibrahim, Heba K. Aslan, Mahmoud Said Elsayed, Anca D. Jurcut i Marianne A. Azer. "Anomaly Detection of Zero-Day Attacks Based on CNN and Regularization Techniques". Electronics 12, nr 3 (23.01.2023): 573. http://dx.doi.org/10.3390/electronics12030573.
Pełny tekst źródłaAl-Rushdan, Huthifh, Mohammad Shurman i Sharhabeel Alnabelsi. "On Detection and Prevention of Zero-Day Attack Using Cuckoo Sandbox in Software-Defined Networks". International Arab Journal of Information Technology 17, nr 4A (31.07.2020): 662–70. http://dx.doi.org/10.34028/iajit/17/4a/11.
Pełny tekst źródłaAlam, Naushad, i Muqeem Ahmed. "Zero-day Network Intrusion Detection using Machine Learning Approach". International Journal on Recent and Innovation Trends in Computing and Communication 11, nr 8s (18.08.2023): 194–201. http://dx.doi.org/10.17762/ijritcc.v11i8s.7190.
Pełny tekst źródłaBu, Seok-Jun, i Sung-Bae Cho. "Deep Character-Level Anomaly Detection Based on a Convolutional Autoencoder for Zero-Day Phishing URL Detection". Electronics 10, nr 12 (21.06.2021): 1492. http://dx.doi.org/10.3390/electronics10121492.
Pełny tekst źródłaAli, Shamshair, Saif Ur Rehman, Azhar Imran, Ghazif Adeem, Zafar Iqbal i Ki-Il Kim. "Comparative Evaluation of AI-Based Techniques for Zero-Day Attacks Detection". Electronics 11, nr 23 (28.11.2022): 3934. http://dx.doi.org/10.3390/electronics11233934.
Pełny tekst źródłaRodríguez, Eva, Pol Valls, Beatriz Otero, Juan José Costa, Javier Verdú, Manuel Alejandro Pajuelo i Ramon Canal. "Transfer-Learning-Based Intrusion Detection Framework in IoT Networks". Sensors 22, nr 15 (27.07.2022): 5621. http://dx.doi.org/10.3390/s22155621.
Pełny tekst źródłaSheikh, Zakir Ahmad, Yashwant Singh, Pradeep Kumar Singh i Paulo J. Sequeira Gonçalves. "Defending the Defender: Adversarial Learning Based Defending Strategy for Learning Based Security Methods in Cyber-Physical Systems (CPS)". Sensors 23, nr 12 (9.06.2023): 5459. http://dx.doi.org/10.3390/s23125459.
Pełny tekst źródłaMala, V., i K. Meena. "Hybrid classification model to detect advanced intrusions using data mining techniques". International Journal of Engineering & Technology 7, nr 2.4 (10.03.2018): 10. http://dx.doi.org/10.14419/ijet.v7i2.4.10031.
Pełny tekst źródłaDas, Saikat, Mohammad Ashrafuzzaman, Frederick T. Sheldon i Sajjan Shiva. "Ensembling Supervised and Unsupervised Machine Learning Algorithms for Detecting Distributed Denial of Service Attacks". Algorithms 17, nr 3 (24.02.2024): 99. http://dx.doi.org/10.3390/a17030099.
Pełny tekst źródłaNkongolo, Mike, Jacobus Philippus van Deventer i Sydney Mambwe Kasongo. "UGRansome1819: A Novel Dataset for Anomaly Detection and Zero-Day Threats". Information 12, nr 10 (30.09.2021): 405. http://dx.doi.org/10.3390/info12100405.
Pełny tekst źródłaPeppes, Nikolaos, Theodoros Alexakis, Evgenia Adamopoulou i Konstantinos Demestichas. "The Effectiveness of Zero-Day Attacks Data Samples Generated via GANs on Deep Learning Classifiers". Sensors 23, nr 2 (12.01.2023): 900. http://dx.doi.org/10.3390/s23020900.
Pełny tekst źródłaWang, Hui, Yifeng Wang i Yuanbo Guo. "Unknown network attack detection method based on reinforcement zero-shot learning". Journal of Physics: Conference Series 2303, nr 1 (1.07.2022): 012008. http://dx.doi.org/10.1088/1742-6596/2303/1/012008.
Pełny tekst źródłaSubbarayalu, Venkatraman, i Maria Anu Vensuslaus. "An Intrusion Detection System for Drone Swarming Utilizing Timed Probabilistic Automata". Drones 7, nr 4 (3.04.2023): 248. http://dx.doi.org/10.3390/drones7040248.
Pełny tekst źródłaEmmah, Victor T., Chidiebere Ugwu i Laeticia N. Onyejegbu. "An Enhanced Classification Model for Likelihood of Zero-Day Attack Detection and Estimation". European Journal of Electrical Engineering and Computer Science 5, nr 4 (19.08.2021): 69–75. http://dx.doi.org/10.24018/ejece.2021.5.4.350.
Pełny tekst źródłaYao, Wenbin, Longcan Hu, Yingying Hou i Xiaoyong Li. "A Lightweight Intelligent Network Intrusion Detection System Using One-Class Autoencoder and Ensemble Learning for IoT". Sensors 23, nr 8 (20.04.2023): 4141. http://dx.doi.org/10.3390/s23084141.
Pełny tekst źródłaMehedy, Hasan MD. "Combating Evolving Threats: A Signature-Anomaly Based Hybrid Intrusion Detection System for Smart Homes with False Positive Mitigation". International Journal for Research in Applied Science and Engineering Technology 12, nr 5 (31.05.2024): 403–11. http://dx.doi.org/10.22214/ijraset.2024.61393.
Pełny tekst źródłaNeuschmied, Helmut, Martin Winter, Branka Stojanović, Katharina Hofer-Schmitz, Josip Božić i Ulrike Kleb. "APT-Attack Detection Based on Multi-Stage Autoencoders". Applied Sciences 12, nr 13 (5.07.2022): 6816. http://dx.doi.org/10.3390/app12136816.
Pełny tekst źródłaVenu Gopal Bitra, Ajay Kumar, Seshagiri Rao, Prakash i Md. Shakeel Ahmed. "Comparative analysis on intrusion detection system using machine learning approach". World Journal of Advanced Research and Reviews 21, nr 3 (30.03.2024): 2555–62. http://dx.doi.org/10.30574/wjarr.2024.21.3.0983.
Pełny tekst źródłaKhraisat, Gondal, Vamplew, Kamruzzaman i Alazab. "A novel Ensemble of Hybrid Intrusion Detection System for Detecting Internet of Things Attacks". Electronics 8, nr 11 (23.10.2019): 1210. http://dx.doi.org/10.3390/electronics8111210.
Pełny tekst źródłaMerugu, Akshay, Hrishikesh Goud Chagapuram i Rahul Bollepalli. "Spam Email Detection Using Convolutional Neural Networks: An Empirical Study". International Journal for Research in Applied Science and Engineering Technology 11, nr 10 (31.10.2023): 981–91. http://dx.doi.org/10.22214/ijraset.2023.56143.
Pełny tekst źródłaBhaya, Wesam S., i Mustafa A. Ali. "Review on Malware and Malware Detection Using Data Mining Techniques". JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences 25, nr 5 (29.11.2017): 1585–601. http://dx.doi.org/10.29196/jub.v25i5.104.
Pełny tekst źródłaGetman, Aleksandr Igorevich, Maxim Nikolaevich Goryunov, Andrey Georgievich Matskevich i Dmitry Aleksandrovich Rybolovlev. "A Comparison of a Machine Learning-Based Intrusion Detection System and Signature-Based Systems". Proceedings of the Institute for System Programming of the RAS 34, nr 5 (2022): 111–26. http://dx.doi.org/10.15514/ispras-2022-34(5)-7.
Pełny tekst źródłaRahman, Rizwan Ur, i Deepak Singh Tomar. "Web Bot Detection System Based on Divisive Clustering and K-Nearest Neighbor Using Biostatistics Features Set". International Journal of Digital Crime and Forensics 13, nr 6 (1.11.2021): 1–27. http://dx.doi.org/10.4018/ijdcf.20211101.oa6.
Pełny tekst źródłaDr.R.Venkatesh, Kavitha S, Dr Uma Maheswari N,. "Network Anomaly Detection for NSL-KDD Dataset Using Deep Learning". INFORMATION TECHNOLOGY IN INDUSTRY 9, nr 2 (31.03.2021): 821–27. http://dx.doi.org/10.17762/itii.v9i2.419.
Pełny tekst źródłaP. Arul, Et al. "Predicting the Attacks in IoT Devices using DP Algorithm". International Journal on Recent and Innovation Trends in Computing and Communication 11, nr 11 (30.11.2023): 164–68. http://dx.doi.org/10.17762/ijritcc.v11i11.9133.
Pełny tekst źródłaOthman, Trifa S., i Saman M. Abdullah. "An Intelligent Intrusion Detection System for Internet of Things Attack Detection and Identification Using Machine Learning". ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY 11, nr 1 (22.05.2023): 126–37. http://dx.doi.org/10.14500/aro.11124.
Pełny tekst źródłaDange, Varsha, Soham Phadke, Tilak Solunke, Sidhesh Marne, Snehal Suryawanshi i Om Surase. "Weighted Multiclass Intrusion Detection System". ITM Web of Conferences 57 (2023): 01009. http://dx.doi.org/10.1051/itmconf/20235701009.
Pełny tekst źródłaBOBROVNIKOVA, KIRA, MARIIA KAPUSTIAN i DMYTRO DENYSIUK. "RESEARCH OF MACHINE LEARNING BASED METHODS FOR CYBERATTACKS DETECTION IN THE INTERNET OF THINGS INFRASTRUCTURE". Computer systems and information technologies, nr 3 (14.04.2022): 110–15. http://dx.doi.org/10.31891/csit-2021-5-15.
Pełny tekst źródłaM.R., Amal, i Venkadesh P. "Review of Cyber Attack Detection: Honeypot System". Webology 19, nr 1 (20.01.2022): 5497–514. http://dx.doi.org/10.14704/web/v19i1/web19370.
Pełny tekst źródłaKhraisat, Ansam, Iqbal Gondal, Peter Vamplew, Joarder Kamruzzaman i Ammar Alazab. "Hybrid Intrusion Detection System Based on the Stacking Ensemble of C5 Decision Tree Classifier and One Class Support Vector Machine". Electronics 9, nr 1 (17.01.2020): 173. http://dx.doi.org/10.3390/electronics9010173.
Pełny tekst źródłaСычугов, А. А., i М. М. Греков. "Application of generative adversarial networks in anomaly detection systems". МОДЕЛИРОВАНИЕ, ОПТИМИЗАЦИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ 9, nr 1(32) (31.01.2021): 3–4. http://dx.doi.org/10.26102/2310-6018/2021.32.1.003.
Pełny tekst źródłaAl-Sabbagh, Kais Said, Hamid M. Ali i Elaf Sabah Abbas. "Development an Anomaly Network Intrusion Detection System Using Neural Network". Journal of Engineering 18, nr 12 (1.12.2012): 1325–34. http://dx.doi.org/10.31026/j.eng.2012.12.03.
Pełny tekst źródłaIliyasu, Auwal Sani, Usman Alhaji Abdurrahman i Lirong Zheng. "Few-Shot Network Intrusion Detection Using Discriminative Representation Learning with Supervised Autoencoder". Applied Sciences 12, nr 5 (24.02.2022): 2351. http://dx.doi.org/10.3390/app12052351.
Pełny tekst źródłaArshi, M., MD Nasreen i Karanam Madhavi. "A Survey of DDOS Attacks Using Machine Learning Techniques". E3S Web of Conferences 184 (2020): 01052. http://dx.doi.org/10.1051/e3sconf/202018401052.
Pełny tekst źródłaKumar Lingamallu, Raghu, Pradeep Balasubramani, S. Arvind, P. Srinivasa Rao, Veeraswamy Ammisetty, Koppuravuri Gurnadha Gupta, M. N. Sharath, Y. J. Nagendra Kumar i Vaibhav Mittal. "Securing IoT networks: A fog-based framework for malicious device detection". MATEC Web of Conferences 392 (2024): 01103. http://dx.doi.org/10.1051/matecconf/202439201103.
Pełny tekst źródłaKikelomo, Akinwole Agnes, Yekini Nureni Asafe i Ogundele Israel Oludayo. "Malware Detection System Using Mathematics of Random Forest Classifier". International Journal of Advances in Scientific Research and Engineering 09, nr 03 (2023): 45–53. http://dx.doi.org/10.31695/ijasre.2023.9.3.6.
Pełny tekst źródłaZoppi, Tommaso, Mohamad Gharib, Muhammad Atif i Andrea Bondavalli. "Meta-Learning to Improve Unsupervised Intrusion Detection in Cyber-Physical Systems". ACM Transactions on Cyber-Physical Systems 5, nr 4 (31.10.2021): 1–27. http://dx.doi.org/10.1145/3467470.
Pełny tekst źródłaLi, Shiyun, i Omar Dib. "Enhancing Online Security: A Novel Machine Learning Framework for Robust Detection of Known and Unknown Malicious URLs". Journal of Theoretical and Applied Electronic Commerce Research 19, nr 4 (26.10.2024): 2919–60. http://dx.doi.org/10.3390/jtaer19040141.
Pełny tekst źródłaSamantray, Om Prakash, i Satya Narayan Tripathy. "An Opcode-Based Malware Detection Model Using Supervised Learning Algorithms". International Journal of Information Security and Privacy 15, nr 4 (październik 2021): 18–30. http://dx.doi.org/10.4018/ijisp.2021100102.
Pełny tekst źródłaSerinelli, Benedetto Marco, Anastasija Collen i Niels Alexander Nijdam. "On the analysis of open source datasets: validating IDS implementation for well-known and zero day attack detection". Procedia Computer Science 191 (2021): 192–99. http://dx.doi.org/10.1016/j.procs.2021.07.024.
Pełny tekst źródłaRangaraju, Sakthiswaran. "AI SENTRY: REINVENTING CYBERSECURITY THROUGH INTELLIGENT THREAT DETECTION". EPH - International Journal of Science And Engineering 9, nr 3 (1.12.2023): 30–35. http://dx.doi.org/10.53555/ephijse.v9i3.211.
Pełny tekst źródłaAlsulami, Basmah, Abdulmohsen Almalawi i Adil Fahad. "Toward an Efficient Automatic Self-Augmentation Labeling Tool for Intrusion Detection Based on a Semi-Supervised Approach". Applied Sciences 12, nr 14 (17.07.2022): 7189. http://dx.doi.org/10.3390/app12147189.
Pełny tekst źródłaH., Manjunath, i Saravana Kumar. "Network Intrusion Detection System using Convolution Recurrent Neural Networks and NSL-KDD Dataset". Fusion: Practice and Applications 13, nr 1 (2023): 117–25. http://dx.doi.org/10.54216/fpa.130109.
Pełny tekst źródłaBalaji K. M. i Subbulakshmi T. "Malware Analysis Using Classification and Clustering Algorithms". International Journal of e-Collaboration 18, nr 1 (styczeń 2022): 1–26. http://dx.doi.org/10.4018/ijec.290290.
Pełny tekst źródłaDung, Nguyễn Thị, Nguyễn Văn Quân i Nguyễn Việt Hùng. "Ứng dụng mô hình học sâu trong phát hiện tấn công trinh sát mạng". Journal of Science and Technology on Information security 2, nr 16 (13.02.2023): 60–72. http://dx.doi.org/10.54654/isj.v1i16.922.
Pełny tekst źródłaU., Kumaran, Thangam S., T. V. Nidhin Prabhakar, Jana Selvaganesan i Vishwas H.N. "Adversarial Defense: A GAN-IF Based Cyber-security Model for Intrusion Detection in Software Piracy". Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 14, nr 4 (23.12.2023): 96–114. http://dx.doi.org/10.58346/jowua.2023.i4.008.
Pełny tekst źródłaJagan, Shanmugam, Ashish Ashish, Miroslav Mahdal, Kenneth Ruth Isabels, Jyoti Dhanke, Parita Jain i Muniyandy Elangovan. "A Meta-Classification Model for Optimized ZBot Malware Prediction Using Learning Algorithms". Mathematics 11, nr 13 (24.06.2023): 2840. http://dx.doi.org/10.3390/math11132840.
Pełny tekst źródła