Gotowa bibliografia na temat „KIF5A”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „KIF5A”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "KIF5A"
Rahman, Amena, Adeela Kamal, Elizabeth A. Roberts i Lawrence S. B. Goldstein. "Defective Kinesin Heavy Chain Behavior in Mouse Kinesin Light Chain Mutants". Journal of Cell Biology 146, nr 6 (20.09.1999): 1277–88. http://dx.doi.org/10.1083/jcb.146.6.1277.
Pełny tekst źródłaKanai, Yoshimitsu, Yasushi Okada, Yousuke Tanaka i Nobutaka Hirokawa. "605 Localization of kinesin heavy chains (KIF5A, KIF5B, KIF5C) in nervous system". Neuroscience Research 28 (styczeń 1997): S84. http://dx.doi.org/10.1016/s0168-0102(97)90217-0.
Pełny tekst źródłaTian, Da-Wei, Zhou-Liang Wu, Li-Ming Jiang, Jie Gao, Chang-Li Wu i Hai-Long Hu. "KIF5A Promotes Bladder Cancer Proliferation In Vitro and In Vivo". Disease Markers 2019 (3.07.2019): 1–9. http://dx.doi.org/10.1155/2019/4824902.
Pełny tekst źródłaHares, Kelly, Scott Miners, Neil Scolding, Seth Love i Alastair Wilkins. "KIF5A and KLC1 expression in Alzheimer’s disease: relationship and genetic influences". AMRC Open Research 1 (26.06.2019): 1. http://dx.doi.org/10.12688/amrcopenres.12861.2.
Pełny tekst źródłaHares, Kelly, Scott Miners, Neil Scolding, Seth Love i Alastair Wilkins. "KIF5A and KLC1 expression in Alzheimer’s disease: relationship and genetic influences". AMRC Open Research 1 (19.02.2019): 1. http://dx.doi.org/10.12688/amrcopenres.12861.1.
Pełny tekst źródłaHares, Kelly, K. Kemp, S. Loveless, C. M. Rice, N. Scolding, E. Tallantyre, N. Robertson i A. Wilkins. "KIF5A and the contribution of susceptibility genotypes as a predictive biomarker for multiple sclerosis". Journal of Neurology 268, nr 6 (23.01.2021): 2175–84. http://dx.doi.org/10.1007/s00415-020-10373-w.
Pełny tekst źródłaMahase, Vidhyanand, Adebiyi Sobitan, Christina Johnson, Farion Cooper, Yixin Xie, Lin Li i Shaolei Teng. "Computational analysis of hereditary spastic paraplegia mutations in the kinesin motor domains of KIF1A and KIF5A". Journal of Theoretical and Computational Chemistry 19, nr 06 (5.08.2020): 2041003. http://dx.doi.org/10.1142/s0219633620410035.
Pełny tekst źródłaKALCHISHKOVA, NIKOLINA, i KONRAD J. BÖHM. "ON THE RELEVANCE OF THE CORE HELIX ALPHA 6 TO KINESIN ACTIVITY GENERATION". Biophysical Reviews and Letters 04, nr 01n02 (kwiecień 2009): 63–75. http://dx.doi.org/10.1142/s1793048009000934.
Pełny tekst źródłaFilosto, Massimiliano, Stefano Piccinelli, Ilaria Palmieri, Nicola Necchini, Marialuisa Valente, Isabella Zanella, Giorgio Biasiotto, Diego Lorenzo, Cristina Cereda i Alessandro Padovani. "A Novel Mutation in the Stalk Domain of KIF5A Causes a Slowly Progressive Atypical Motor Syndrome". Journal of Clinical Medicine 8, nr 1 (22.12.2018): 17. http://dx.doi.org/10.3390/jcm8010017.
Pełny tekst źródłaNakajima, Kazuo, Xiling Yin, Yosuke Takei, Dae-Hyun Seog, Noriko Homma i Nobutaka Hirokawa. "Molecular Motor KIF5A Is Essential for GABAA Receptor Transport, and KIF5A Deletion Causes Epilepsy". Neuron 76, nr 5 (grudzień 2012): 945–61. http://dx.doi.org/10.1016/j.neuron.2012.10.012.
Pełny tekst źródłaRozprawy doktorskie na temat "KIF5A"
Lin, Raozhou, i 林饒洲. "Kif5b interaction with NMDA receptors regulates neuronal function". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hdl.handle.net/10722/208429.
Pełny tekst źródłapublished_or_final_version
Biochemistry
Doctoral
Doctor of Philosophy
Wang, Jing, i 王景. "The study of KIF5B-mediated intracellular transport in neurons". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41633763.
Pełny tekst źródłaWang, Jing. "The study of KIF5B-mediated intracellular transport in neurons". Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41633763.
Pełny tekst źródłaD'Amico, Eva. "Etude des effets de l'inactivation de Kif3a dans les cellules thyroïdiennes". Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209643.
Pełny tekst źródłaAfin d’étudier le rôle précis de la kinésine II dans la glande thyroïde, nous avons invalidé spécifiquement le gène Kif3a dans cet organe chez la souris. Bien que cette inactivation ait conduit à un développement complet du tissu thyroïdien, les souris invalidées présentent une hypothyroïdie congénitale caractérisée par des concentrations sériques élevées de TSH et basses de T4. Par la suite, nous avons mis en évidence une expression fortement diminuée du transporteur d’iodure NIS chez ces souris, causant une déficience en iodure intracellulaire, une iodation insuffisante de la thyroglobuline et une sécrétion anormale de l’hormone T4 dans la circulation sanguine. De plus, ex vivo, nous avons montré que la réponse à la TSH en terme d’AMPc est altérée dans la thyroïde de ces souris. Ces observations nous ont permis d’émettre l’hypothèse que l’invalidation du gène Kif3a spécifiquement dans la glande thyroïde mène à une anomalie dans la voie de signalisation du récepteur de la TSH, en amont de la production d’AMPc. Finalement, in vitro, par l’utilisation de cellules Kif3a-/-, nous avons analysé l’expression à la membrane plasmique et la réponse à un agoniste du récepteur β2 adrénergique, un membre de la même sous-famille de récepteurs couplés aux protéines G que le récepteur de la TSH. De cette façon, nous avons obtenu des données indiquant que le transport de ce récepteur à la surface cellulaire était altéré en l’absence de Kif3a.
Au vu de ces éléments et de ceux de la littérature, nous suggérons que la kinésine II, et plus particulièrement sa sous-unité KIF3A, joue un rôle important dans le transport du récepteur de la TSH nouvellement synthétisé vers la membrane basale de la cellule de la thyroïde.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Röhlk, Christian. "Characterization of conventional kinesins Kif3 and Kif5 from Dictyostelium discoideum". Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-73948.
Pełny tekst źródłaZhu, Guixia, i 朱貴霞. "Study of the function of Kinesin-1 (KIF5B) in long bone development". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B41757919.
Pełny tekst źródłaGan, Huiyan, i 甘慧妍. "Understanding the role of KIF5B in long bone development and chondrocyte cytokinesis". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hdl.handle.net/10722/211554.
Pełny tekst źródłapublished_or_final_version
Biochemistry
Doctoral
Doctor of Philosophy
Zhu, Guixia. "Study of the function of Kinesin-1 (KIF5B) in long bone development". Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B41757919.
Pełny tekst źródłaLin, Yangjun, i 林扬骏. "Kif5b may play a role in impairing mouse memory : a behaviour and cellular study". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/193575.
Pełny tekst źródłapublished_or_final_version
Biochemistry
Master
Master of Medical Sciences
Millington, Grethel. "Primary Cilia-dependent Gli Processing in Neural Crest Cells is Required for Early Tongue Development". University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1479815997983138.
Pełny tekst źródłaKsiążki na temat "KIF5A"
Gerdzhikova, Ina. Plazhnii︠a︡t dnevnik na edna kifla. Plovdiv: Khermes, 2011.
Znajdź pełny tekst źródłaBoyle, Lia. A Precision Medicine Approach to Understanding KIF1A Associated Neurological Disorder. [New York, N.Y.?]: [publisher not identified], 2021.
Znajdź pełny tekst źródłaPravoslavnyĭ Svi͡ato-Tikhonovskiĭ gumanitarnyĭ universitet (Moscow, Russia), red. Kifa: Patriarshiĭ mestobli︠u︡stitelʹ svi︠a︡shchennomuchenik Petr, mitropolit Krutit︠s︡kiĭ (1862-1937). Moskva: Pravoslavnyĭ Svi︠a︡to-Tikhonovskiĭ gumanitarnyĭ universitet, 2012.
Znajdź pełny tekst źródłaBöhlke, Christopher. Kif3a guides microtubular dynamics, migration and lumen formation of MDCK cells. Freiburg: Universität, 2013.
Znajdź pełny tekst źródłaHu, Daniel Jun-Kit. Roles for Cytoplasmic Dynein and the Unconventional Kinesin, KIF1a, during Cortical Development. [New York, N.Y.?]: [publisher not identified], 2015.
Znajdź pełny tekst źródłaLaborie, Jean Paul. L' urbanisation de la Mauritanie: Enquête dans trois villes secondaires, Rosso, Kiffa et Aioun-el-Atrouss. Paris: Documentation française, 1988.
Znajdź pełny tekst źródłaLeloup, Roger. Exiles of Kifa. CineBook, 2022.
Znajdź pełny tekst źródłaLeloup, Roger. Yoko Tsuno, tome 18 : Les exilés de Kifa. Dupuis, 1991.
Znajdź pełny tekst źródłaParker, Philip M. The 2006 Economic and Product Market Databook for Kiffa, Mauritania. ICON Group International, Inc., 2006.
Znajdź pełny tekst źródłaThe 2005 Economic and Product Market Databook for Kiffa, Mauritania. Icon Group International, Inc., 2005.
Znajdź pełny tekst źródłaCzęści książek na temat "KIF5A"
Rao, Lu, i Arne Gennerich. "Single-Molecule Studies on the Motion and Force Generation of the Kinesin-3 Motor KIF1A". W Optical Tweezers, 585–608. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2229-2_21.
Pełny tekst źródłaChana, Mundeep S., Brian P. Tripet i Robert S. Hodges. "The Role of Unstructured Highly Charged Regions on the Stability and Specificity of Dimerization of Two-Stranded α-Helical Coiled-Coils: Neck Region of Kinesin-Like Motor Protein Kif3A". W Peptides: The Wave of the Future, 359–60. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0464-0_165.
Pełny tekst źródła"25. Ayyubid Kings (Lords) of Hisn Kifa". W The History of Tur Abdin, 123–26. Piscataway, NJ, USA: Gorgias Press, 2008. http://dx.doi.org/10.31826/9781463213336-027.
Pełny tekst źródłaPanicker, Saurav, i Satish Ramalingam. "Chromosome 10". W Cancer Genes, 307–43. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815080292123010013.
Pełny tekst źródłaDolley, Shawn, Dan Hartman, Thea Norman i Ian Hudson. "Wasifu wa Sera Lengwa". W DAC Trials. The Global Health Network, 2021. http://dx.doi.org/10.48060/tghn.15.
Pełny tekst źródłaStreszczenia konferencji na temat "KIF5A"
Albuquerque Filho, José Marcos Vieira de, Natália Merten Athayde, Alzira Alves de Siqueira Carvalho, Igor Braga Farias, Roberta Ismael Lacerda Machado i Marco Antônio Troccoli Chieia. "Familial ALS Type 25 – A Brazillian Case Serie". W XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.186.
Pełny tekst źródłaDulski, Jaroslaw, Audrey Strongosky, Rana Hanna Al-Shaikh i Zbigniew Wszolek. "A large kindred with familial ALS due to the KIF5A p.Arg1007Lys mutation (P10-8.004)". W 2023 Annual Meeting Abstracts. Lippincott Williams & Wilkins, 2023. http://dx.doi.org/10.1212/wnl.0000000000203881.
Pełny tekst źródłaBrent, Jonathan, Oliver Sterling-Angus i Han-Xiang Deng. "ALS Causative Mutations in KIF5A Disrupt Autoinhibition Leading to Toxic Gain of Function (P8-8.002)". W 2023 Annual Meeting Abstracts. Lippincott Williams & Wilkins, 2023. http://dx.doi.org/10.1212/wnl.0000000000203062.
Pełny tekst źródłaMizuta, C., S. Nakagawa, K. Hiramatsu, A. Miyoshi, E. Kobayashi, T. Kimura, Y. Ueda i T. Kimura. "379 Downregulating KIF4A significantly suppressed growth of uterine leiomyosarcoma". W ESGO 2021 Congress. BMJ Publishing Group Ltd, 2021. http://dx.doi.org/10.1136/ijgc-2021-esgo.263.
Pełny tekst źródłaShin, Jung-Young, Min-Young Kim, Kyoung-Hwa Son, Jeong-Oh Kim i Jin-Hyoung Kang. "Abstract 2710: Tumorigenic activity of a novel KIF5B-RET fusion gene". W Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-2710.
Pełny tekst źródłaSchubert, Laura, Anh T. Le, Andrea E. Doak i Robert C. Doebele. "Abstract 1842: Novel KIF5B-RET+ NSCLC cell lines demonstrate differential responses to RET inhibitors". W Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1842.
Pełny tekst źródłaKim, Minsuh, Yong-Ah Suh, Ju-hee Oh, Bo Ra Lee, Joon Kim i Se Jin Jang. "Abstract 1176: The role of KIF3A in the suppression of canonical Wnt signaling through the KIF3A and β-arrestin complex, independent of the ciliary mechanism, in non-small cell lung cancer (NSCLC)". W Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-1176.
Pełny tekst źródłaCapelletti, Marzia, Doron Lipson, Geoff Otto, Roman Yelensky, Dalia Ercan, Jhingook Kim Kim, Hidefumi Sasaki i in. "Abstract LB-88: Identification of recurrent oncogenic KIF5B-RET rearrangements in non-small cell lung cancer". W Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-lb-88.
Pełny tekst źródłaHuang, Qingling, Valentina E. Schneeberger, Noreen Luetteke, Chengliu Jin, Domenico Coppola i Jie Wu. "Abstract 2299: Generation and characterization of inducible KIF5B-RET mouse model of non-small cell lung cancer". W Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-2299.
Pełny tekst źródłaHoang-Minh, Lan, Dorit Siebzehnrubl, Loic Deleyrolle, George Ugartemendia, Hunter Futch, Benjamin Griffith, Joshua Breunig, Susan Semple-Rowland, Brent Reynolds i Matthew Sarkisian. "Abstract 1542: Targeting KIF3a and primary cilia differentially affects sonic hedgehog sensitivity and the rate of glioblastoma progression". W Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-1542.
Pełny tekst źródła