Spis treści
Gotowa bibliografia na temat „Kähler- Einstein equation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Kähler- Einstein equation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Kähler- Einstein equation"
Zhang, Xi, i Xiangwen Zhang. "Generalized Kähler–Einstein Metrics and Energy Functionals". Canadian Journal of Mathematics 66, nr 6 (1.12.2014): 1413–35. http://dx.doi.org/10.4153/cjm-2013-034-3.
Pełny tekst źródłaPAN, LISHUANG, AN WANG i LIYOU ZHANG. "ON THE KÄHLER–EINSTEIN METRIC OF BERGMAN–HARTOGS DOMAINS". Nagoya Mathematical Journal 221, nr 1 (marzec 2016): 184–206. http://dx.doi.org/10.1017/nmj.2016.4.
Pełny tekst źródłaZhang, Xi. "Hermitian Yang–Mills–Higgs Metrics on Complete Kähler Manifolds". Canadian Journal of Mathematics 57, nr 4 (1.08.2005): 871–96. http://dx.doi.org/10.4153/cjm-2005-034-3.
Pełny tekst źródłaVisinescu, Mihai. "Sasaki–Ricci flow equation on five-dimensional Sasaki–Einstein space Yp,q". Modern Physics Letters A 35, nr 14 (20.03.2020): 2050114. http://dx.doi.org/10.1142/s021773232050114x.
Pełny tekst źródłaAlekseevsky, Dmitri V., i Fabio Podestà. "Homogeneous almost-Kähler manifolds and the Chern–Einstein equation". Mathematische Zeitschrift 296, nr 1-2 (4.12.2019): 831–46. http://dx.doi.org/10.1007/s00209-019-02446-y.
Pełny tekst źródłaARVANITOYEORGOS, ANDREAS, IOANNIS CHRYSIKOS i YUSUKE SAKANE. "HOMOGENEOUS EINSTEIN METRICS ON GENERALIZED FLAG MANIFOLDS WITH FIVE ISOTROPY SUMMANDS". International Journal of Mathematics 24, nr 10 (wrzesień 2013): 1350077. http://dx.doi.org/10.1142/s0129167x13500778.
Pełny tekst źródłaLi, Chi. "On the limit behavior of metrics in the continuity method for the Kähler–Einstein problem on a toric Fano manifold". Compositio Mathematica 148, nr 6 (12.10.2012): 1985–2003. http://dx.doi.org/10.1112/s0010437x12000334.
Pełny tekst źródłaSAKAGUCHI, MAKOTO. "FOUR-DIMENSIONAL N=2 SUPERSTRING BACKGROUNDS AND THE REAL HEAVENS". International Journal of Modern Physics A 11, nr 07 (20.03.1996): 1279–97. http://dx.doi.org/10.1142/s0217751x96000572.
Pełny tekst źródłaBiswas, Indranil. "Yang–Mills connections on compact complex tori". Journal of Topology and Analysis 07, nr 02 (26.03.2015): 293–307. http://dx.doi.org/10.1142/s1793525315500107.
Pełny tekst źródłaARVANITOYEORGOS, ANDREAS. "GEOMETRY OF FLAG MANIFOLDS". International Journal of Geometric Methods in Modern Physics 03, nr 05n06 (wrzesień 2006): 957–74. http://dx.doi.org/10.1142/s0219887806001399.
Pełny tekst źródłaRozprawy doktorskie na temat "Kähler- Einstein equation"
Yi, Li. "Théorèmes d'extension et métriques de Kähler-Einstein généralisées". Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0151/document.
Pełny tekst źródłaThis thesis consists in two parts: -In the first part, we first deal with a Kahler version of the famous Ohsawa-Takegoshi extension theorem; then, a problem of extending the closed positive currents. Our motivation comes from the Siu's conjecture on the invariance of plurigenera over a Kahler family. Indeed, in the proof of his famous theorem, the Ohsawa-Takegoshi theorem plays an important role. It is, therefore, natural to think that the proof for the conjecture involves an extension theorem of Ohsawa-Takegoshi type in the Kahler case. Because of the technical difficulties coming from the regularization process of quasi-psh functions over the compact Kahler manifolds, we only obtain two special cases of the hoped result. As for the extension of closed positive currents, our result is a special case of the conjecture which predicts that every closed positive current defined over the central fiber in a Kahler cohomology class twisted by the first Chern class of the canonical bundle admits an extension. -In the second part, we are interested in the uniqueness of the solutions of the equations of generalized Monge-Ampère type, a generalized Bando-Mabuchi theorem concerning the Kahler-Einstein metrics over Fano manifolds. We follow the method introduced by Berndtsson and generalize his result by working with a closed positive current in place of a klt pair in his context. The properties of the convexity of the Bergman metrics play an important role in this part
Części książek na temat "Kähler- Einstein equation"
Siu, Yum-Tong. "The Heat Equation Approach to Hermitian-Einstein Metrics on Stable Bundles". W Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, 11–84. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1_1.
Pełny tekst źródłaKoiso, Norihito. "On Rotationally Symmetric Hamilton's Equation for Kähler-Einstein Metrics". W Recent Topics in Differential and Analytic Geometry, 327–37. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-12-001018-9.50015-4.
Pełny tekst źródłaLeBrun, Claude. "The Einstein‐Maxwell Equations, Extremal Kähler Metrics, and Seiberg‐Witten Theory". W The Many Facets of Geometry, 17–33. Oxford University Press, 2010. http://dx.doi.org/10.1093/acprof:oso/9780199534920.003.0003.
Pełny tekst źródła