Artykuły w czasopismach na temat „K2Ti4O9”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „K2Ti4O9”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bamberger, Carlos E., George M. Begun i C. Sue MacDougall. "Raman Spectroscopy of Potassium Titanates: Their Synthesis, Hydrolytic Reactions, and Thermal Stability". Applied Spectroscopy 44, nr 1 (styczeń 1990): 30–37. http://dx.doi.org/10.1366/0003702904085732.
Pełny tekst źródłaLiu, Chang, Xi Feng Qin, Zhu Hong Yang, Xin Feng i Xiao Hua Lu. "Control of Surface Morphologies and Crystal Structures of Potassium Titanate Fibers by Flux Method". Key Engineering Materials 334-335 (marzec 2007): 201–4. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.201.
Pełny tekst źródłaZhang, Na, Hai Fang Xu, Yu Lin Li, Qiang Li i Cheng Zhang. "Novel Phase Transformation Phenomenon of Potassium Teteratitanate Nanofibres Synthesized from H2TiO3". Advanced Materials Research 177 (grudzień 2010): 62–65. http://dx.doi.org/10.4028/www.scientific.net/amr.177.62.
Pełny tekst źródłaZhou, Xuesong, Jing Fan, Xiaoli Wei, Yi Shen i Yanzhi Meng. "Study on the Growth Mechanism of K2Ti4O9 Crystal". High Temperature Materials and Processes 37, nr 5 (25.04.2018): 405–10. http://dx.doi.org/10.1515/htmp-2016-0168.
Pełny tekst źródłaYoshimura, H. N., André Luiz Molisani, Cátia Fredericci, K. S. de Oliveira, A. C. L. Weber i A. L. M. Martins. "Synthesis of Potassium Titanate Fibers for Friction Materials". Materials Science Forum 591-593 (sierpień 2008): 755–59. http://dx.doi.org/10.4028/www.scientific.net/msf.591-593.755.
Pełny tekst źródłaCui, Wen Quan, Shuang Long Lin, Shan Shan Ma, Li Liu i Ying Hua Liang. "Photocatalytic Activity of Ag2S/K2Ti4O9 for Rhodamine B Degradation under Visible Light Illumination". Advanced Materials Research 668 (marzec 2013): 29–32. http://dx.doi.org/10.4028/www.scientific.net/amr.668.29.
Pełny tekst źródłaZhang, S., J. Wu, X. L. Ji, F. Yi i P. F. Hu. "Preparation of K2Ti4O9 nanowhiskers via stearic acid method". Materials Research Innovations 19, sup10 (14.12.2015): S10–340—S10–344. http://dx.doi.org/10.1179/1432891715z.0000000002190.
Pełny tekst źródłaKishore, Brij, Venkatesh G i N. Munichandraiah. "K2Ti4O9: A Promising Anode Material for Potassium Ion Batteries". Journal of The Electrochemical Society 163, nr 13 (2016): A2551—A2554. http://dx.doi.org/10.1149/2.0421613jes.
Pełny tekst źródłaKikkawa, S., F. Yasuda i M. Koizumi. "Ionic conductivities of Na2Ti3O7, K2Ti4O9 and their related materials". Materials Research Bulletin 20, nr 10 (październik 1985): 1221–27. http://dx.doi.org/10.1016/0025-5408(85)90096-0.
Pełny tekst źródłaTournoux, M., R. Marchand i L. Brohan. "Layered K2Ti4O9 and the open metastable TiO2(B) structure". Progress in Solid State Chemistry 17, nr 1 (styczeń 1986): 33–52. http://dx.doi.org/10.1016/0079-6786(86)90003-8.
Pełny tekst źródłaLi, Sunfeng, Xing Wang, Qi Chen, Qinqin He, Mengmeng Lv, Xueting Liu, Jianping Lv i Fengyu Wei. "Synthesis and photocatalytic activity of N-K2Ti4O9/UiO-66 composites". RSC Advances 5, nr 66 (2015): 53198–206. http://dx.doi.org/10.1039/c5ra05477j.
Pełny tekst źródłaTandon, Shripal R. P., i S. D. Pandey. "Electrical conductivity and epr investigations in iron doped polycrystalline K2Ti4O9". Journal of Physics and Chemistry of Solids 52, nr 9 (styczeń 1991): 1101–7. http://dx.doi.org/10.1016/0022-3697(91)90043-y.
Pełny tekst źródłaDeng, Zhao, Ying Dai, Hai Rui Liu i Wen Chen. "Large Scale Synthesis of BaTiO3 Nanorods by a Template Way". Advanced Materials Research 79-82 (sierpień 2009): 373–76. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.373.
Pełny tekst źródłaTan, Shali, Yujun Zhang i Hongyu Gong. "Investigation on K2Ti4O9 Whisker Absorbent and Applications in Heavy Metal Ions Removal". Journal of Water and Environment Technology 5, nr 1 (2007): 13–18. http://dx.doi.org/10.2965/jwet.2007.13.
Pełny tekst źródłaLin, Shuanglong, Li Liu, Jinshan Hu, Yinghua Liang i Wenquan Cui. "Photocatalytic activity of Ag@AgI sensitized K2Ti4O9 nanoparticles under visible light irradiation". Journal of Molecular Structure 1081 (luty 2015): 260–67. http://dx.doi.org/10.1016/j.molstruc.2014.10.050.
Pełny tekst źródłaWu, Jinlei, Po Lu, Jianxun Dai, Chuantao Zheng, Tong Zhang, William W. Yu i Yu Zhang. "High performance humidity sensing property of Ti3C2Tx MXene-derived Ti3C2Tx/K2Ti4O9 composites". Sensors and Actuators B: Chemical 326 (styczeń 2021): 128969. http://dx.doi.org/10.1016/j.snb.2020.128969.
Pełny tekst źródłaCui, Wenquan, Shanshan Ma, Li Liu, Jinshan Hu i Yinghua Liang. "CdS-sensitized K2Ti4O9 composite for photocatalytic hydrogen evolution under visible light irradiation". Journal of Molecular Catalysis A: Chemical 359 (lipiec 2012): 35–41. http://dx.doi.org/10.1016/j.molcata.2012.03.018.
Pełny tekst źródłaLee, Tae hun, Choon-Ki Na i Hyunju Park. "Adsorption characteristics of strontium onto K2Ti4O9 and PP-g-AA nonwoven fabric". Environmental Engineering Research 23, nr 3 (23.03.2018): 330–38. http://dx.doi.org/10.4491/eer.2018.032.
Pełny tekst źródłaMISHRA, S. A. K., S. D. PANDEY i R. P. TANDON. "ChemInform Abstract: Electrical Conductivity and EPR Investigations in Manganese Doped Polycrystalline K2Ti4O9." ChemInform 23, nr 28 (21.08.2010): no. http://dx.doi.org/10.1002/chin.199228014.
Pełny tekst źródłaChigrin, P. G., E. A. Kirichenko, V. S. Rudnev, I. V. Lukiyanchuk i T. P. Yarovaya. "Catalytic Properties of K2Ti2O5 + K2Ti4O9/TiO2/TiO2 + SiO2/Ti Composites and Their Resistance to Environment Effects during the Process of Carbon Black Oxidation". Protection of Metals and Physical Chemistry of Surfaces 55, nr 1 (styczeń 2019): 109–14. http://dx.doi.org/10.1134/s2070205119010088.
Pełny tekst źródłaWallenberg, L. Reine, Mehri Sanati i Arne Andersson. "On the transformation mechanism of K2Ti4O9 to TiO2(B) and formation of microvoids". Microscopy Microanalysis Microstructures 1, nr 5-6 (1990): 357–64. http://dx.doi.org/10.1051/mmm:0199000105-6035700.
Pełny tekst źródłaShripal, S. Badhwar, Deepam Maurya i Jitendra Kumar. "Dielectric and a.c. conductivity studies in pure and manganese doped layered K2Ti4O9 ceramics". Journal of Materials Science: Materials in Electronics 16, nr 8 (sierpień 2005): 495–500. http://dx.doi.org/10.1007/s10854-005-2723-4.
Pełny tekst źródłaSAKURAI, Yoshihito, i Tetsuro YOSHIDA. "Synthesis of K2Ti4O9 by the Hydrolysis of KOH-Ti(iso-C3H7O)4 Ethanol Solution". Journal of the Ceramic Society of Japan 99, nr 1146 (1991): 105–7. http://dx.doi.org/10.2109/jcersj.99.105.
Pełny tekst źródłaMa, Zenghui, Qingning Li, Hao Pang, Zhaozhe Yu i Dongliang Yan. "Ti3C2Tx@K2Ti4O9 composite materials by controlled oxidation and alkalization strategy for potassium ion batteries". Ceramics International 48, nr 11 (czerwiec 2022): 16418–24. http://dx.doi.org/10.1016/j.ceramint.2022.02.193.
Pełny tekst źródłaXiaoli, Ji, Wu Shijiang, Shen Jie i Zhao Xiujian. "Sol-Gel Process Synthesis and Visible-Light Photocatalytic Degradation Performance of Ag Doped K2Ti4O9". Integrated Ferroelectrics 161, nr 1 (24.03.2015): 62–69. http://dx.doi.org/10.1080/10584587.2015.1035607.
Pełny tekst źródłaSAKURAI, Yoshihito, i Tetsuro YOSHIDA. "The synthesis of K2Ti4O9 by the hydrolysis of mixed metal alkoxides in ethanolic solutions." NIPPON KAGAKU KAISHI, nr 1 (1989): 33–38. http://dx.doi.org/10.1246/nikkashi.1989.33.
Pełny tekst źródłaCao, Yang, Kongjun Zhu, Qingliu Wu, Qilin Gu i Jinhao Qiu. "Hydrothermally synthesized barium titanate nanostructures from K2Ti4O9 precursors: Morphology evolution and its growth mechanism". Materials Research Bulletin 57 (wrzesień 2014): 162–69. http://dx.doi.org/10.1016/j.materresbull.2014.05.043.
Pełny tekst źródłaXu, Yanli, Qi Chen, Hanbiao Yang, Mengmeng Lv, Qinqin He, Xueting Liu i Fengyu Wei. "Enhanced photodegradation of Rhodamine B under visible light by N-K2Ti4O9/MIL-101 composite". Materials Science in Semiconductor Processing 36 (sierpień 2015): 115–23. http://dx.doi.org/10.1016/j.mssp.2015.03.025.
Pełny tekst źródłaCui, Wenquan, Shanshan Ma, Li Liu, Jinshan Hu, Yinghua Liang i Joanne Gamage McEvoy. "Photocatalytic activity of Cd1−xZnxS/K2Ti4O9 for Rhodamine B degradation under visible light irradiation". Applied Surface Science 271 (kwiecień 2013): 171–81. http://dx.doi.org/10.1016/j.apsusc.2013.01.156.
Pełny tekst źródłaWu, Dan, Huanbo Wang, Hong Huang, Rong Zhang, Lei Ji, Hongyu Chen, Yonglan Luo i in. "Ambient electrochemical N2 reduction to NH3 under alkaline conditions enabled by a layered K2Ti4O9 nanobelt". Chemical Communications 55, nr 52 (2019): 7546–49. http://dx.doi.org/10.1039/c9cc02409c.
Pełny tekst źródłaShao, Cong, Sheng Feng, Guiliang Zhu, Wei Zheng, Jiajia Sun, Xianglin Huang i Ziqiu Ni. "Synergistic effects in N-K2Ti4O9/ZIF-8 composite and its photocatalysis degradation of Bisphenol A". Materials Letters 268 (czerwiec 2020): 127334. http://dx.doi.org/10.1016/j.matlet.2020.127334.
Pełny tekst źródłaCao, Minglei, Wei Chen, Yanan Ma, Haiming Huang, Shijun Luo i Chuankun Zhang. "Cross-linked K2Ti4O9 nanoribbon arrays with superior rate capability and cyclability for lithium-ion batteries". Materials Letters 279 (listopad 2020): 128495. http://dx.doi.org/10.1016/j.matlet.2020.128495.
Pełny tekst źródłaLiang, Yinghua, Shuanglong Lin, Jinshan Hu, Li Liu, Joanne Gamage McEvoy i Wenquan Cui. "Facile hydrothermal synthesis of nanocomposite Ag@AgCl/K2Ti4O9 and photocatalytic degradation under visible light irradiation". Journal of Molecular Catalysis A: Chemical 383-384 (marzec 2014): 231–38. http://dx.doi.org/10.1016/j.molcata.2013.12.014.
Pełny tekst źródłaLiang, Yinghua, Shuanglong Lin, Li Liu, Jinshan Hu i Wenquan Cui. "Synthesis and photocatalytic performance of an efficient Ag@AgBr/K2Ti4O9 composite photocatalyst under visible light". Materials Research Bulletin 56 (sierpień 2014): 25–33. http://dx.doi.org/10.1016/j.materresbull.2014.04.043.
Pełny tekst źródłaCui, Wenquan, Shanshan Ma, Li Liu i Yinghua Liang. "PbS-sensitized K2Ti4O9 composite: Preparation and photocatalytic properties for hydrogen evolution under visible light irradiation". Chemical Engineering Journal 204-206 (wrzesień 2012): 1–7. http://dx.doi.org/10.1016/j.cej.2012.07.075.
Pełny tekst źródłaLi, Sunfeng, Xing Wang, Qinqin He, Qi Chen, Yanli Xu, Hanbiao Yang, Mengmeng Lü, Fengyu Wei i Xueting Liu. "Synergistic effects in N-K2Ti4O9/UiO-66-NH2 composites and their photocatalysis degradation of cationic dyes". Chinese Journal of Catalysis 37, nr 3 (marzec 2016): 367–77. http://dx.doi.org/10.1016/s1872-2067(15)61033-6.
Pełny tekst źródłaMelo, Mauricio A., Saulo A. Carminati, Jefferson Bettini i Ana F. Nogueira. "Pillaring and NiOx co-catalyst loading as alternatives for the photoactivity enhancement of K2Ti4O9 towards water splitting". Sustainable Energy & Fuels 2, nr 5 (2018): 958–67. http://dx.doi.org/10.1039/c7se00589j.
Pełny tekst źródłaLin, Shuanglong, Li Liu, Jinshan Hu, Weijia An, Yinghua Liang i Wenquan Cui. "An oil-in-water self-assembly synthesis, characterization and photocatalytic properties of nano Ag@AgBr sensitized K2Ti4O9". Materials Science in Semiconductor Processing 39 (listopad 2015): 339–47. http://dx.doi.org/10.1016/j.mssp.2015.05.024.
Pełny tekst źródłaBai, Mingwu, Qunji Xue, Weimin Liu i Shengrong Yang. "Wear mechanisms of K2Ti4O9 whiskers reinforced Al20Si aluminum matrix composites with lubrication of water and tetradecane". Wear 199, nr 2 (listopad 1996): 222–27. http://dx.doi.org/10.1016/0043-1648(96)06960-8.
Pełny tekst źródłaLiu, Chang, Nanhua Wu, Jun Wang, Liangliang Huang i Xiaohua Lu. "Determination of the ion exchange process of K2Ti4O9 fibers at constant pH and modeling with statistical rate theory". RSC Advances 5, nr 90 (2015): 73474–80. http://dx.doi.org/10.1039/c5ra11882d.
Pełny tekst źródłaIde, Yusuke, Wataru Shirae, Toshiaki Takei, Durai Mani i Joel Henzie. "Merging Cation Exchange and Photocatalytic Charge Separation Efficiency in an Anatase/K2Ti4O9 Nanobelt Heterostructure for Metal Ions Fixation". Inorganic Chemistry 57, nr 10 (3.05.2018): 6045–50. http://dx.doi.org/10.1021/acs.inorgchem.8b00538.
Pełny tekst źródłaChen, Qi, Qinqin He, Mengmeng Lv, Xueting Liu, Jin Wang i Jianping Lv. "The vital role of PANI for the enhanced photocatalytic activity of magnetically recyclable N–K2Ti4O9/MnFe2O4/PANI composites". Applied Surface Science 311 (sierpień 2014): 230–38. http://dx.doi.org/10.1016/j.apsusc.2014.05.046.
Pełny tekst źródłaPal, Dharmendra, Shahanshah Haider Abdi i Manisha Shukla. "Structural and EPR studies of Lithium inserted layered Potassium tetra titanate K2Ti4O9 as material for K ions battery". Journal of Materials Science: Materials in Electronics 26, nr 9 (31.05.2015): 6647–52. http://dx.doi.org/10.1007/s10854-015-3265-z.
Pełny tekst źródłaMa, Yanlin, Zhaoping Deng, Zepeng Li, Quanzhi Lin, Yuhang Wu i Weisha Dou. "Adsorption characteristics and mechanism for K2Ti4O9 whiskers removal of Pb(II), Cd(II), and Cu(II) cations in wastewater". Journal of Environmental Chemical Engineering 9, nr 5 (październik 2021): 106236. http://dx.doi.org/10.1016/j.jece.2021.106236.
Pełny tekst źródłaWang, Xun, Yu-Xuan Li, Xiao-Hong Yi, Chen Zhao, Peng Wang, Jiguang Deng i Chong-Chen Wang. "Photocatalytic Cr(VI) elimination over BUC-21/N-K2Ti4O9 composites: Big differences in performance resulting from small differences in composition". Chinese Journal of Catalysis 42, nr 2 (luty 2021): 259–70. http://dx.doi.org/10.1016/s1872-2067(20)63629-4.
Pełny tekst źródłaLiu, Yi, Yingxin Li, Fan Li, Yizhuo Liu, Xiaoyan Yuan, Lifeng Zhang i Shouwu Guo. "Conversion of Ti2AlC to C-K2Ti4O9 via a KOH assisted hydrothermal treatment and its application in lithium-ion battery anodes". Electrochimica Acta 295 (luty 2019): 599–604. http://dx.doi.org/10.1016/j.electacta.2018.11.003.
Pełny tekst źródłaSaothayanun, Taya Ko, Thipwipa Tip Sirinakorn i Makoto Ogawa. "Ion Exchange of Layered Alkali Titanates (Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) with Alkali Halides by the Solid-State Reactions at Room Temperature". Inorganic Chemistry 59, nr 6 (27.02.2020): 4024–29. http://dx.doi.org/10.1021/acs.inorgchem.9b03695.
Pełny tekst źródłaOgura, S., K. Sato i Y. Inoue. "Effects of RuO2 dispersion on photocatalytic activity for water decomposition of BaTi4O9 with a pentagonal prism tunnel and K2Ti4O9 with a zigzag layer structure". Physical Chemistry Chemical Physics 2, nr 10 (2000): 2449–54. http://dx.doi.org/10.1039/b000187m.
Pełny tekst źródłaWang, Fang, Yong Tao Zhang, Yanli Xu, Xing Wang, Sunfeng Li, Hanbiao Yang, Xueting Liu i Fengyu Wei. "Enhanced photodegradation of Rhodamine B by coupling direct solid-state Z-scheme N-K2Ti4O9/g-C3N4 heterojunction with high adsorption capacity of UiO-66". Journal of Environmental Chemical Engineering 4, nr 3 (wrzesień 2016): 3364–73. http://dx.doi.org/10.1016/j.jece.2016.07.008.
Pełny tekst źródłaAnsari, S. "Application of hollow porous molecularly imprinted polymers using K2Ti4O9 coupled with SPE-HPLC for the determination of celecoxib in human urine samples: optimization by central composite design (CCD)". Analytical Methods 9, nr 21 (2017): 3200–3212. http://dx.doi.org/10.1039/c7ay00547d.
Pełny tekst źródła