Gotowa bibliografia na temat „JNK”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „JNK”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "JNK"

1

Zhao, Yi, Giada Spigolon, Christophe Bonny, Juraj Culman, Alessandro Vercelli i Thomas Herdegen. "The JNK inhibitor D-JNKI-1 blocks apoptotic JNK signaling in brain mitochondria". Molecular and Cellular Neuroscience 49, nr 3 (marzec 2012): 300–310. http://dx.doi.org/10.1016/j.mcn.2011.12.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Weitzman, Jonathan B. "JNK". Current Biology 10, nr 8 (kwiecień 2000): R290. http://dx.doi.org/10.1016/s0960-9822(00)00429-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Chen, Wei-Kai, Yvonne Y. C. Yeap i Marie A. Bogoyevitch. "The JNK1/JNK3 interactome – Contributions by the JNK3 unique N-terminus and JNK common docking site residues". Biochemical and Biophysical Research Communications 453, nr 3 (październik 2014): 576–81. http://dx.doi.org/10.1016/j.bbrc.2014.09.122.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Wong, W. "JNK Slowdown". Science Signaling 2, nr 78 (7.07.2009): ec230-ec230. http://dx.doi.org/10.1126/scisignal.278ec230.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Dempsey, Laurie A. "Macrophage Jnk". Nature Immunology 14, nr 2 (18.01.2013): 118. http://dx.doi.org/10.1038/ni.2532.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Okugawa, Shu, Yasuo Ota, Takatoshi Kitazawa, Kuniko Nakayama, Shintaro Yanagimoto, Kunihisa Tsukada, Miki Kawada i Satoshi Kimura. "Janus kinase 2 is involved in lipopolysaccharide-induced activation of macrophages". American Journal of Physiology-Cell Physiology 285, nr 2 (sierpień 2003): C399—C408. http://dx.doi.org/10.1152/ajpcell.00026.2003.

Pełny tekst źródła
Streszczenie:
The mechanisms by which lipopolysaccharide (LPS) is recognized, and how such recognition leads to innate immune responses, are poorly understood. Stimulation with LPS induces the activation of a variety of proteins, including mitogen-activated protein kinases (MAPKs) and NF-κB. Activation of protein tyrosine kinases (PTKs) is also necessary for a number of biological responses to LPS. We used a murine macrophage-like cell line, RAW264.7, to demonstrate that Janus kinase (JAK)2 is tyrosine phosphorylated immediately after LPS stimulation. Anti-Toll-like receptor (TLR)4 neutralization antibody inhibits the phosphorylation of JAK2 and the c-Jun NH2-terminal protein kinase (JNK). Both the JAK inhibitor AG490 and the kinase-deficient JAK2 protein reduce the phosphorylation of JNK and phosphatidylinositol 3-kinase (PI3K) via LPS stimulation. Pharmacological inhibition of the kinase activity of PI3K with LY-294002 decreases the phosphorylation of JNK. Finally, we show that JAK2 is involved in the production of IL-1β and IL-6. PI3K and JNK are also important for the production of IL-1β. These results suggest that LPS induces tyrosine phosphorylation of JAK2 via TLR4 and that JAK2 regulates phosphorylation of JNK mainly through activation of PI3K. Phosphorylation of JAK2 via LPS stimulation is important for the production of IL-1β via the PI3K/JNK cascade. Thus JAK2 plays a pivotal role in LPS-induced signaling in macrophages.
Style APA, Harvard, Vancouver, ISO itp.
7

Lan, K. P., C. J. Wang, J. D. Hsu, K. M. Chen, S. C. Lai i H. H. Lee. "Induced eosinophilia and proliferation inAngiostrongylus cantonensis-infected mouse brain are associated with the induction of JAK/STAT1, IAP/NF-κB and MEKK1/JNK signals". Journal of Helminthology 78, nr 4 (grudzień 2004): 311–17. http://dx.doi.org/10.1079/joh2004256.

Pełny tekst źródła
Streszczenie:
AbstractEosinophilic meningitis or meningoencephalitis caused byAngiostrongylus cantonensisis endemic to the Pacific area of Asia, especially Taiwan, Thailand, and Japan. Although eosinophilia is an important clinical manifestation ofA. cantonensisinfection, the role of eosinophils in the progress of the infection remains to be elucidated. In this experiment, we show thatA. cantonensis-induced eosinophilia and inflammation might lead to the induction of IAP/NF-κB, JAK/STAT1 and MEKK1/JNK signals. The phosphorylation levels of JAK and JNK, STAT1, IAP, NF-κB and MEKK1 protein products were significantly increased after 12 days or 15 days ofA. cantonensisinfection. However, no significant differences in MAPKs such as Raf, MEK-1, ERK1/2 and p38 expression were found between control and infected mice. The activation potency of JAK/STAT1, IAP/NF-κB and MEKK1/JNK started increasing on day 3, with significant induction on day 12 or day 15 afterA. cantonensisinfection. Consistent results were noted in the pathological observations, including eosinophilia, leukocyte infiltration, granulomatous reactions, and time responses in the brain tissues of infected mice. These data suggest that the development of brain injury by eosinophilia ofA. cantonensisinfection is associated with activation of JAK/STAT1 signals by cytokines, and/or activation of MEKK1/JNK by oxidant stress, and/or activation of NF-κB by increasing IAP expression.
Style APA, Harvard, Vancouver, ISO itp.
8

Nihalani, Deepak, Hetty N. Wong i Lawrence B. Holzman. "Recruitment of JNK to JIP1 and JNK-dependent JIP1 Phosphorylation Regulates JNK Module Dynamics and Activation". Journal of Biological Chemistry 278, nr 31 (19.05.2003): 28694–702. http://dx.doi.org/10.1074/jbc.m304212200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sabapathy, Kanaga, Konrad Hochedlinger, Shin Yuen Nam, Anton Bauer, Michael Karin i Erwin F. Wagner. "Distinct Roles for JNK1 and JNK2 in Regulating JNK Activity and c-Jun-Dependent Cell Proliferation". Molecular Cell 15, nr 5 (wrzesień 2004): 713–25. http://dx.doi.org/10.1016/j.molcel.2004.08.028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Borhani, David W. "Covalent JNK inhibitors?" Proceedings of the National Academy of Sciences 106, nr 8 (9.02.2009): E18. http://dx.doi.org/10.1073/pnas.0812246106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "JNK"

1

Rogge, Dorothea Elisabeth [Verfasser]. "JNK und Schlaganfall / Dorothea Elisabeth Rogge". Kiel : Universitätsbibliothek Kiel, 2012. http://d-nb.info/1023870363/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pietkiewicz, Sabine [Verfasser], Reiner [Akademischer Betreuer] Jänicke i Matthias U. [Akademischer Betreuer] Kassack. "Die Bedeutung der JNK-Isoformen JNK1 und JNK2 für die Apoptose nach proteasomaler Inhibition / Sabine Pietkiewicz. Gutachter: Reiner Jänicke ; Matthias U. Kassack". Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2012. http://d-nb.info/102435475X/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Rogers, Jeffrey Scott. "Characterization of JNK Binding Proteins: A Dissertation". eScholarship@UMMS, 2005. https://escholarship.umassmed.edu/gsbs_diss/222.

Pełny tekst źródła
Streszczenie:
The JNK signal transduction pathway mediates a broad, complex biological process in response to inflammatory cytokines and environmental stress. These responses include cell survival and apoptosis, proliferation, tumorigenesis and the immune response. The divergent cellular responses caused by the JNK signal transduction pathway are often regulated by spatial and cell type contexts, as well as the interaction with other cellular processes. The discovery of additional components of the JNK signal transduction pathway are critical to elucidate the stress response mechanisms in cells. This thesis first discusses the cloning and characterization of two novel members of the JNK signal transduction pathway. JIP1 and JMP1 were initially identified from a murine embryo library through a yeast Two-Hybrid screen to identify novel JNK interacting proteins. Full length cDNAs of both genes were cloned and analyzed. JIP1 represents the first member of the JIP group of JNK scaffold proteins which were characterized. The JNK binding domain (JBD) of JIP1 matches the D-domain consensus of other JNK binding proteins, and it demonstrates JNK binding both in vitro and in vivo. This JNK binding was demonstrated to inhibit JNK signal transduction and over-expression of JIP1 inhibits the JNK mediated pre-B cell transformation by bcr-abl. Over-expressed JIP1 also sequesters JNK in the cytoplasm, which may be a mechanism of the inhibition of JNK signaling. A new, high-resolution digital imaging microscopy technique using deconvolution demonstrated the absence of JNK1 in the nucleus of co-transfected JIP1 and JNK1 cells. The other protein discussed in this thesis is JMP1, a novel JNK binding, microtubule co-localized protein. There is a JBD in the JMP1 carboxyl end and a consensus D-domain within this region. The JMP1 JBD demonstrates an increased association with phospho-JNK from UV irradiated cells compared to un-irradiated cells in vivo. JMP1 also has 12 WD-repeat motifs in its amino terminal end which are required for microtubule co-localization. JMP1 demonstrates a cell cycle specific localization at the mitotic spindle poles. This co-localization is dependent on intact microtubules and the amino-terminal WD-repeats are required for this localization. JMP1 mRNA is highly expressed in testis tissues. Immunocytochemistry on murine testis sections using an affinity purified anti-JMP1 antibody demonstrates JMP1 protein in the lumenal compartment of the seminiferous tubules. JMP1 protein is expressed in primary and secondary spermatocytes, cells which are actively undergoing meiosis. The results obtained from the localization of JMP1 in meiotic spermatocytes led to an investigation of the roles of JNK signal transduction in the testis. The testis is an active region of cellular proliferation, apoptosis and differentiation, which make it an appealing model for studying JNK signal transduction. However, the roles JNK signaling have in the testis are poorly understood. I investigated the reproduction capability of Jnk3-/- male mice and discovered older Jnk3-/- males had a reduced capacity to impregnate females compared to younger animals and age-matched wild type controls. The testis morphology and sperm motility of these animals were similar to wild-type animals, and there was no alteration of apoptosis in the testis. The final section of this thesis involves the study of this breeding defect and investigating for cellular defects that might account for this age-related Jnk3-/- phenotype.
Style APA, Harvard, Vancouver, ISO itp.
4

Cosolo, Andrea [Verfasser], i Anne-Kathrin [Akademischer Betreuer] Classen. "Patterning of tissue stress responses by JNK and JAK/STAT / Andrea Cosolo ; Betreuer: Anne-Kathrin Classen". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1202011772/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Collura, Kaitlin Marie. "Palmitoylation-Dependent Regulation of the DLK/JNK/cJun and the GP130/JAK/STAT Retrograde Signaling Pathways". Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/426710.

Pełny tekst źródła
Streszczenie:
Biomedical Sciences
Ph.D.
Palmitoylation is the post-translational addition of the 16-carbon fatty acid palmitate to protein cysteine residues. This process is best known for its roles in targeting proteins to lipid membranes, including both the plasma membrane and vesicles. Palmitoylation occurs in all eukaryotic cells, but appears to be particularly important in neurons, because genetic mutation or loss of several palmitoyl acyltransferases (PATs, the enzymes that catalyze palmitoylation), leads to predominantly neuropathological defects. In addition, a growing number of recent studies have revealed key roles for palmitoylation of specific proteins in neuronal regulation. However, most of these studies have focused on how palmitoylation regulates postsynaptic protein targeting. In contrast, it is far less clear how palmitoylation might regulate the specialized subcellular processes that are important in axons. One particularly important process in axons is retrograde signaling, in which information is conveyed from distal locations back to the cell body. Following injury to axons of the peripheral nervous system (PNS), retrograde signals are critical to activate transcription of pro-regenerative genes. Key retrograde signaling pathways include the DLK/JNK/c-Jun (Dual Leucine Zipper Kinase/c-Jun N-terminal Kinase/c-Jun) signaling pathway and the GP130/JAK/STAT (Glycoprotein 130/Janus Kinase/Signal Transducer and Activator of Transcription) signaling pathway, both of which are activated following nerve injury and are vital to promote regeneration. Though both of these pathways are critical for conveying distal information from the periphery to the cell body, many of their component proteins are predicted to be soluble and diffusible. This raises the question of how these proteins can directionally signal over the long distances that axons extend. Interestingly, bio-informatic and proteomic studies suggested that DLK, GP130, JAK and STAT may be palmitoylated. We hypothesized that palmitoylation could be important for the roles of these proteins in retrograde signaling. Because retrograde signals are initiated in distal axons, a considerable distance from the cell body, we further hypothesized axonally localized PATs might play key roles in the control of retrograde signaling. We find that the retrograde signaling protein DLK is palmitoylated at a highly conserved cysteine residue. This modification is necessary for its localization to motile vesicles and for its interaction with the retrograde signaling protein JIP3. Notably, we also describe a novel role for palmitoylation in regulating DLK’s kinase activity. In addition, our study identifies the first axonally enriched PATs in sensory neurons; DHHC5 and DHHC8. shRNA knockdown experiments in sensory neurons reveal that these axonal PATs control both palmitoylation and surface expression of GP130 and are essential for GP130/JAK/STAT3-dependent retrograde signaling. These findings reveal a novel role for palmitoylation in the control of axonal retrograde signaling, provide key insights into the molecular roles of this modification and identify new potential targets for therapy to improve nerve regeneration post-injury.
Temple University--Theses
Style APA, Harvard, Vancouver, ISO itp.
6

Willoughby, Emma Alexandra. "Interaction between dual specificity phosphatases and JNK scaffolds". Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1446531/.

Pełny tekst źródła
Streszczenie:
The c-Jun N-terminal kinase (JNK) group of mitogen-activated protein kinases (MAPKs) are activated by signals including environmental stresses, growth factors and hormones. In some pathways, scaffold proteins bind JNK and upstream kinases in order to activate subsets of JNK and localise them to specific subcellular sites. For example, the JNK-interacting protein (JIP) scaffold binds JNK, MKK7 and MLKs. The G protein coupled receptor (GPCR) adaptor protein ?-arrestin 2 has also recently been identified as a JNK scaffold, binding JNK3, ASK1 and indirectly MKK4. The work presented here shows that JNK specific dual specificity phosphatases MKP-7 and M3/6 bind to JIP-1 and -2 and that MKP-7 can also bind ?-arrestin 2. In both cases the phosphatases bind to the scaffolds independently of JNK, using the same region within their extended C terminal domains. MKP-7 can specifically dephosphorylate the ?-arrestin 2 bound subset of JNK3 either activated by ASK1 or in response to activation of the GPCR, angiotensin type 1a receptor (AT1aR). MKP-7 transiently dissociates from ?-arrestin 2 following AT1aR activation and over expression of ASK1. These results indicate that JIP-1 and ?-arrestin 2 modulate JNK signalling by binding JNK-specific kinases and phosphatases. The dynamic interaction between MKP-7 and ?-arrestin 2 suggests a possible mechanism by which a positive signal can be passed through a scaffold which binds both activating and inhibitory components.
Style APA, Harvard, Vancouver, ISO itp.
7

Girardin, Stephen. "Régulation de la voie de signalisation intracellulaire JNK/SAPK". Université Louis Pasteur (Strasbourg) (1971-2008), 2001. http://www.theses.fr/2001STR13179.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Shirakawa, Takashi. "Deactivation of STAT6 through serine 707 phosphorylation by JNK". Kyoto University, 2011. http://hdl.handle.net/2433/142114.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Le-Niculescu, Helen. "Characterization of the biological roles of the JNK MAPK pathways in mammalian cells : specific and stringent activation of the JNKK2-JNK signaling module /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p9984810.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Fujikawa, Risako. "EP4 Receptor-Associated Protein in Microglia Promotes Inflammation in the Brain". 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225462.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "JNK"

1

Moses, Judy. Jnk/fd. Syracuse, NY: The author, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Anning, Lin, red. The JNK signaling pathway. Georgetown, Tex: Landes Bioscience, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

1958-, Kovačević Bojan, Šram Olga, Šuica Nikola, Muzej grada Beograda i Galerija Likovni susret, red. Milena JNK: Cvetanje = blooming. Beograd: Muzej grada Beograda, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kostić, Milena Jeftić Ničeva. Milena JNK: Radovi na papiru, 1971-2001 = Milena JNK : works on paper, 1971-2001. Beograd: Narodni muzej, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kung, Shu hung. The role that bacterial DNA and RNA play in PKR and JNK signalling in cardiac myocyte and 2FTGH cells. Sudbury, Ont: Laurentian University, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Molly, Wigand. Junk, sweet junk. New York: Aladdin Paperbacks, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

ill, Goldberg Barry 1960, red. Junk, sweet junk. New York: Scholastic Inc., 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Bock, Robert. Jak-7, Jak-9. Gdan sk: AJ-Press, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Junk. London: Penguin, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Burgess, Melvin. Junk. London: Penguin Books, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "JNK"

1

Kallunki, Tuula. "JNK Subfamily". W Encyclopedia of Cancer, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_3184-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kallunki, Tuula. "JNK Subfamily". W Encyclopedia of Cancer, 2374–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-46875-3_3184.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kallunki, Tuula. "JNK Subfamily". W Encyclopedia of Cancer, 1927–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16483-5_3184.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Claret, Francois X., i Terry Shackleford. "JNK Signaling in Diseases". W Cancer Therapeutic Targets, 753–62. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4419-0717-2_23.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Claret, Francois X., i Terry Shackleford. "JNK Signaling in Diseases". W Cancer Therapeutic Targets, 1–10. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6613-0_23-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Zhan, Xuanzhi, Seunghyi Kook, Eugenia V. Gurevich i Vsevolod V. Gurevich. "Arrestin-Dependent Activation of JNK Family Kinases". W Arrestins - Pharmacology and Therapeutic Potential, 259–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41199-1_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zdrojewska, Justyna, i Eleanor T. Coffey. "The Impact of JNK on Neuronal Migration". W Advances in Experimental Medicine and Biology, 37–57. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7687-6_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kalakouti, Eliana, Roya Babaei-Jadidi i Abdolrahman S. Nateri. "Signalling Pathways of β-Catenin/JNK in Carcinogenesis". W Trends in Stem Cell Proliferation and Cancer Research, 277–96. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6211-4_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Davis, Roger J. "Signal transduction by the JNK group of MAP kinases". W Inflammatory Processes: Molecular Mechanisms and Therapeutic Opportunities, 13–21. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8468-6_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Morgan, Michael J., i You-Sun Kim. "NOX1, Reactive Oxygen Species, JNK, and Necrotic Cell Death". W Necrotic Cell Death, 135–62. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8220-8_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "JNK"

1

Otryaskin, Ya S., A. V. Yurtova i S. I. Pinyaev. "CELL RECEPTORS AND SIGNALING PATHWAYS INVOLVED IN THE REGENERATION OF INJURED PERIPHERAL NERVES". W X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-353.

Pełny tekst źródła
Streszczenie:
The paper considers the process of injury to peripheral nerve fibers and the possibility of influencing their regeneration through reactions mediated by interaction with receptors that activate signaling pathways. Pathways such as RAS/ERK, PI3K, PLC-γ, JAK-STAT, MAPK/ERK, JNK and p38MAPK are key in signal transduction through biochemical cascade reactions, and modulating them can speed up the process of repair of damaged nerve fibers.
Style APA, Harvard, Vancouver, ISO itp.
2

Kaunas, Roland, Zuyi Huang i Juergen Hahn. "A Kinematic Model Coupling Cytoskeletal Dynamics With JNK Activation in Response to Matrix Stretching". W ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-205635.

Pełny tekst źródła
Streszczenie:
Mechanical stretch regulates many cell functions, including proliferation, apoptosis, migration and morphology that occur in response to stretch-induced changes in intracellular signaling and gene expression. We have previously reported that the temporal pattern of stretch-induced JNK activation is highly dependent on the spatiotemporal pattern of stretch that is applied. Specifically, cyclic uniaxial stretch causes a transient activation of JNK that subsides as their actin stress fibers (SFs) become oriented perpendicular to the direction of stretch, while cyclic equibiaxial stretch causes a sustained activation of JNK and does not induce SF orientation (1).
Style APA, Harvard, Vancouver, ISO itp.
3

Xie, Xuemei, Tamer S. Kaoud, Ramakrishna Edupunganti, Tinghu Zhang, Takahiro Kogawa, Gaurav B. Chauhan, Nathanael S. Gray, Chandra Bartholomeusz, Kevin N. Dalby i Naoto T. Ueno. "Abstract 750: JNK-IN-8: a novel covalent inhibitor targeting JNK signaling in triple-negative breast cancer". W Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-750.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ryota, Takahashi, Nakata Wachiko, Kinoshita Hiroto, Hayakawa Yoku, Nakagawa Hayato, Ijichi Hideaki, Hirata Yoshihiro, Maeda Shin i Koike Kazuhiko. "Abstract B37: Analysis of the role of JNK and therapeutic effect of JNK inhibition on pancreatic cancer." W Abstracts: AACR Special Conference on Pancreatic Cancer: Progress and Challenges; June 18-21, 2012; Lake Tahoe, NV. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.panca2012-b37.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Reynaert, Niki, Irene Eurlings, Evi Mercken, Rafael De Cabo, Scott Aesif, Jos Van der Velden, Yvonne Janssen-Heininger, Emiel Wouters i Mieke Dentener. "Involvement of JNK in TNFα driven remodelling". W Annual Congress 2015. European Respiratory Society, 2015. http://dx.doi.org/10.1183/13993003.congress-2015.pa5058.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Красільнікова, О. А., Г. Б. Кравченко i Г. В. Стороженко. "Перспективи використання інгібіторів JNK у корекції патологічних станів". W MODERN MEDICINE: THE USE OF CREATIVE INDUSTRIES IN THE HEALTHCARE SYSTEM. Baltija Publishing, 2021. http://dx.doi.org/10.30525/978-9934-26-182-4-39.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Красільнікова, О. А., Г. В. Стороженко i З. В. Шовкова. "Вплив інгібітору JNK SP600125 на показники обміну сфінголіпідів у гепатоцитах". W NEW TRENDS AND UNRESOLVED ISSUES OF PREVENTIVE AND CLINICAL MEDICINE. Baltija Publishing, 2020. http://dx.doi.org/10.30525/978-9934-588-81-5-2.22.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Liu, Lei, Li Hui i Zhen-zhen Zhang. "Activation of JNK/Bim/Bax pathway in UV-induced apoptosis". W SPIE BiOS, redaktor Wei R. Chen. SPIE, 2011. http://dx.doi.org/10.1117/12.874749.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Jones, Sandra, Emma Steer, Yama Haqzad, Zaheer Tahir i Mahmoud Loubani. "155 Total JNK protein expression is elevated in patients diagnosed with hypertension or hypercholesterolemia, whereas activated-JNK is raised in patients receiving pharmacological treatment". W British Cardiovascular Society Annual Conference ‘High Performing Teams’, 4–6 June 2018, Manchester, UK. BMJ Publishing Group Ltd and British Cardiovascular Society, 2018. http://dx.doi.org/10.1136/heartjnl-2018-bcs.151.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ebelt, ND, i CL Van Den Berg. "Abstract P6-04-17: The irreversible c-Jun N-terminal kinase (JNK) inhibitor, JNK-IN-8, sensitizes basal-like breast cancer cells to lapatinib". W Abstracts: Thirty-Sixth Annual CTRC-AACR San Antonio Breast Cancer Symposium - Dec 10-14, 2013; San Antonio, TX. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/0008-5472.sabcs13-p6-04-17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "JNK"

1

LoGrasso, Philip, i Serge Przedborski. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis. Fort Belvoir, VA: Defense Technical Information Center, październik 2013. http://dx.doi.org/10.21236/ada596507.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kushner, Peter J. Src-JNK Potentiation of Estrogen Receptor AF-1; Mechanism, and Role in Estrogen Action in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2001. http://dx.doi.org/10.21236/ada404637.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kushner, Peter J. Src-JNK Potentiation of Estrogen Receptor AF-1; Mechanism, and Role in Estrogen Action in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2002. http://dx.doi.org/10.21236/ada411308.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kushner, Peter. Src-JNK Potentiation of Estrogen Receptor AF-1; Mechanism, and Role in Estrogen Action in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2000. http://dx.doi.org/10.21236/ada391750.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Jones, M., i K. Yasuda. JWK Thumbprint URI. RFC Editor, sierpień 2022. http://dx.doi.org/10.17487/rfc9278.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Jones, M. JSON Web Key (JWK). RFC Editor, maj 2015. http://dx.doi.org/10.17487/rfc7517.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Jones, M., i N. Sakimura. JSON Web Key (JWK) Thumbprint. RFC Editor, wrzesień 2015. http://dx.doi.org/10.17487/rfc7638.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

McManigle, A. P., i A. W. Simonis. JBK-75 stainless steel machinability study. Office of Scientific and Technical Information (OSTI), wrzesień 1993. http://dx.doi.org/10.2172/10192352.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Phillips, Sara, red. Space junk: what is being done? Monash University, luty 2022. http://dx.doi.org/10.54377/4fc0-4684.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Bourcier, W. L., R. G. Couch, J. Gansemer, W. G. Halsey, C. E. Palmer, K. H. Sinz, R. B. Stout, A. Wijesinghe i T. J. Wolery. LLNL/JNC repository collaboration interim progress report. Office of Scientific and Technical Information (OSTI), lipiec 1999. http://dx.doi.org/10.2172/12540.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii