Gotowa bibliografia na temat „Jet Vehicle”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Jet Vehicle”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Jet Vehicle"
Zhang, Lin, Junli Yang, Tiecheng Duan, Jie Wang, Xiuyi Li i Kunyuan Zhang. "Numerical and Experimental Investigation on Nosebleed Air Jet Control for Hypersonic Vehicle". Aerospace 10, nr 6 (9.06.2023): 552. http://dx.doi.org/10.3390/aerospace10060552.
Pełny tekst źródłaSabak, Ryszard. "Synthetic Diagnostics Of The JET System Of The JET-2 Unmanned Drone". Journal of KONBiN 32, nr 1 (1.12.2014): 37–44. http://dx.doi.org/10.2478/jok-2014-0029.
Pełny tekst źródłaPark, Byoungjik, Yangkyun Kim, Jin Ouk Park i Ohk Kun Lim. "Jet Flame Risk Analysis for Safe Response to Hydrogen Vehicle Accidents". Sustainability 15, nr 13 (21.06.2023): 9884. http://dx.doi.org/10.3390/su15139884.
Pełny tekst źródłaWhittlesey, Robert W., i John O. Dabiri. "Optimal vortex formation in a self-propelled vehicle". Journal of Fluid Mechanics 737 (15.11.2013): 78–104. http://dx.doi.org/10.1017/jfm.2013.560.
Pełny tekst źródłaMeng, Yu-shan, Zhong-wei Wang, Wei Huang, Yao-bin Niu i Li Yan. "Coupled fluid–thermal analysis of the reduction mechanism for the drag and heat flux induced by jet interaction in a hypersonic reusable launch vehicle". AIP Advances 12, nr 10 (1.10.2022): 105124. http://dx.doi.org/10.1063/5.0124608.
Pełny tekst źródłaAbbas, Mohammad, i David W. Riggins. "Analysis of Energy Utilization and Losses for Jet-Propelled Vehicles". Aerospace 8, nr 11 (12.11.2021): 342. http://dx.doi.org/10.3390/aerospace8110342.
Pełny tekst źródłaXue, Fei, Yunlong Zhang, Ning Cao i Liugang Li. "Solving the Moment Amplification Factor of a Lateral Jet by the Unsteady Motion Experimental Method". Applied Sciences 12, nr 16 (22.08.2022): 8387. http://dx.doi.org/10.3390/app12168387.
Pełny tekst źródłaSioma, Andrzej, i Wojciech Lepiarz. "Vision Analysis of a Biomimetic Water Vehicle Propeller". Solid State Phenomena 198 (marzec 2013): 144–49. http://dx.doi.org/10.4028/www.scientific.net/ssp.198.144.
Pełny tekst źródłaFikri, Hasnul, Wanda Afnison, Wagino Wagino i Hendra Dani Saputra. "Analisis Penggunaan Variasi Turbo Cyclone Terhadap Performa Kendaraan". JTPVI: Jurnal Teknologi dan Pendidikan Vokasi Indonesia 1, nr 1 (13.02.2023): 105–18. http://dx.doi.org/10.24036/jtpvi.v1i1.18.
Pełny tekst źródłaHuang, Jian. "Research on Water Sprays Shielding Device for Transport Vehicle". Applied Mechanics and Materials 707 (grudzień 2014): 317–20. http://dx.doi.org/10.4028/www.scientific.net/amm.707.317.
Pełny tekst źródłaRozprawy doktorskie na temat "Jet Vehicle"
Nyberg, Ludwig. "Thrust Allocation for Jet Driven Surface Vessels". Thesis, KTH, Mekatronik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-271905.
Pełny tekst źródłaDynamiska positioneringssystem har vart under utveckling sedan den första implementeringen i början av 1960-talet. Syftet med ett dynamiskt positioneringssystem är att möjliggöra automatisk positionering av ett fartyg när omständigheterna inte tillåter förtöjning eller förankring. Historiskt har utvecklingen drivits framåt av behovet inom offshoreindustrin, men under senare år har systemen visat sig vara användbara även i andra delar av den marina industrin. Idag finns dock få alternativ anpassade för jetdrivna fartyg. En av huvuddelarna i ett dynamiskt positioneringssystem är kraftallokering. Syftet med denna del är att fördela önskad styrkraft till tillgängliga ställdon. Ofta är det önskvärt att göra detta samtidigt som ett sekundärt mål tas hänsyn till, vanligtvis energiförbrukning. Ett alternativ för kraftallokering är en direkt allokeringsalgoritm, detta är en ganska enkel algoritm. Mer avancerade alternativ finns i litteraturen, men implementerade exempel är fortfarande ovanliga. Ett exempel på ett mer avancerat alternativ, som möjliggör bättre anpassning, är att använda modellbaserade algoritmer. Att formulera allokeringsproblemet som ett linjärt kvadratiskt problem och använda en linjär kvadratisk regulator är ett alternativ som har visat sig fungera bra för icke jetdrivna fartyg. En generell fartygsmodell utvecklas och anvnnds för att simulera och testa de olika allokeringsalgoritmerna. Vidare föreslås en metod för att omvandla den allokerade styrkraften till parametrar som kan styra jetmotorerna. Detta är ett nödvändigt steg för att, i slutändan, kunna implementera styrkrafterna på ett riktigt fartyg. En jämförelse av allokeringsalgoritmer baserade på stegsvar med och utan störningar visar att den linjära kvadratiska regulatorn hanterar de uppsatta testfallen bättre än den direkta allokeraren. Däremot dras den modellbaserade algoritmen med det problemet att omfattande kunskapen krävs angående systemets dynamik. Detta är något som inte krävs för direktallokeraren och är värt att ta hänsyn till.
Bergman, Niklas. "Effects of Mach cruise number on conventional civil jet aircraft sizing". Thesis, Mälardalen University, School of Innovation, Design and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-7450.
Pełny tekst źródłaThis thesis work was executed at Swift Engineering Incorporated located in San Clemente, California during spring in 2009. Placement supervisor from Swift was Mark Page and advisor and examiner from the Division of future products at Mälardalen University, Sweden was Gustaf Enebog.
The objective with this thesis work was to examine the effects of fitness ratio, lift over drag, lift coefficient at cruise, winglet span, wing sweep angle, wing aspect ratio, wing area and weights with respect to Mach number for a conventional business jet capable of 18 passengers. The cruise speed study range from Mach 0.88 to 0.99.
The Excel based conceptual design tool Jetsizer 2008c was used to make four models with similar configuration and mission but with different cruise Mach numbers.
A new Jetsizer module was then created to handle a modification process where the models are optimized for their speed and configuration. The result in this report gives guidelines for the needed values when creating an initial CFD model for this type of airplane.
Schumacher, Viking Alex. "Jet Stream Velocity fromAzipod on Stadsgården : A Litterature Study of PIANC W.G. 180Application for Stadsgården". Thesis, KTH, Marina system, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-243091.
Pełny tekst źródłaFartygsföretaget VIKING LINE har beställt ett nytt fartyg med planerad leverans år 2020. Fartyget kommer att trafikera dagligen från Stockholm hamnen, Stadsgården. Fartyget är utrustat med två 10 MW Azipod propeller system. Detta nya framdrivningssystem har förmågan att rotera riktningen för propellern 360° vilket skiljer sig från andra fartyg som för närvarande använder samma hamn. Propeller riktning och avstånd från kajen har uppmärksammats hos Stockholms Hamnar. Stabiliteten av kajväggen på Stadsgården ska relateras till de riktlinjer som fastställs av PIANC Arbetsgrupp 180: "Guidelines for Protecting Berthing Structures from Scour Caused by Ships." Riktlinjerna har jämförts med ’actuator disc theory’ för att validera den ursprungliga jetströmhastigheten från den nya propellern. Spridningen av strålströmmen analyserades senare och en hastighet vid kajväggen beräknas. Brist på information från vissa parametrar i riktlinjerna har lett till implementeringar av antaganden. Osäkerheter i de metoder och ekvationer som presenteras i riktlinjerna diskuteras. Jetströmshastigheten från det nya fartyget jämförs med hastigheten från ett liknande fartyg som för närvarande utnyttjar samma hamn. Från jämförelsen framgår det att kajfronten kommer att exponeras för hastigheter fyra gånger större än de nuvarande jetströmshastigheterna på Stadsgården. En lista med rekommenderad åtgärd som kan utföras av Stockholms Hamnar presenteras.
Fung, Pearl Haiyan. "Flow control over a micro unmanned aerial vehicle using synthetic jet actuators". Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/16950.
Pełny tekst źródłaOhanian, Osgar John. "Ducted Fan Aerodynamics and Modeling, with Applications of Steady and Synthetic Jet Flow Control". Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/27687.
Pełny tekst źródłaPh. D.
Wemming, Hannes. "Validation and integration of a rubber engine model into an MDO environment". Thesis, Linköpings universitet, Fluid och mekanisk systemteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-61028.
Pełny tekst źródłaKiran, Amit. "Jet noise : aeroacoustic distribution of a subsonic co-axial jet". Thesis, University of Warwick, 2008. http://wrap.warwick.ac.uk/3914/.
Pełny tekst źródłaMuse, Jonathan Adam. "An H-Infinity norm minimization approach for adaptive control". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34830.
Pełny tekst źródłaLuo, Xinfu. "Plasma based jet actuators for flow control". Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/348870/.
Pełny tekst źródłaMcLaughlin, Philip. "A contribution to the jet noise installation problem". Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/190205/.
Pełny tekst źródłaKsiążki na temat "Jet Vehicle"
Corporation, Intertec Publishing, red. Personal water vehicle service manual. Overland Park, KS: Intertec Pub. Corp., 1988.
Znajdź pełny tekst źródłaDavis, Mark C. In-flight wing pressure distributions for the NASA F/A-18A High Alpha Research Vehicle. Edwards, Calif: National Aeronautics and Space Administration, Dryden Flight Research Center, 2000.
Znajdź pełny tekst źródłaInternational, Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels (6th 1988 Durham England). Papers presented at the 6th International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels, Durham, UK: 27-29 September, 1988. Bedford: BHRA, 1988.
Znajdź pełny tekst źródłaW, Pahle Joseph, i United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., red. Thrust vectoring on the NASA F-18 high alpha research vehicle. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1996.
Znajdź pełny tekst źródłaW, Pahle Joseph, i United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., red. Thrust vectoring on the NASA F-18 high alpha research vehicle. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1996.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. A vehicle health monitoring system for the space shuttle reaction control system during reentry. Cambridge, Mass: Charles Stark Draper Laboratory, 1995.
Znajdź pełny tekst źródłaFreudinger, Lawrence C. Flutter clearance of the F-18 high-angle-of-attack research vehicle with experimental wingtip instrumentation pods. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Znajdź pełny tekst źródłaIliff, Kenneth W. Flight-determined, subsonic, lateral-directional stability and control derivatives of the thrust-vectoring F-18 high angle of attack research vehicle (HARV), and comparisons to the basic F-18 and predicted derivatives. Edwards, Calif: National Aeronautics and Space Administration, Dryden Flight Research Center, 1999.
Znajdź pełny tekst źródłaIliff, Kenneth W. Flight-determined subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) with thrust vectoring. Edwards, Calif: NASA, Dryden Flight Research Center, 1997.
Znajdź pełny tekst źródłaIliff, Kenneth W. Flight-determined subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) with thrust vectoring. Edwards, Calif: National Aeronautics and Space Administration, Dryden Flight Research Center, 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "Jet Vehicle"
Yin, Yankai, Feng Duan i Fei Kang. "Design and Control of Penta-Jet Aerial Vehicle". W Intelligent Robotics and Applications, 760–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89134-3_69.
Pełny tekst źródłaAbdullah, Mahir Faris, Humam Kareem Jalghaf i Rozli Zulkifli. "A Critical Review of Multiple Impingement Jet Mechanisms for Flow Characteristics and Heat Transfer Augmentation". W Vehicle and Automotive Engineering 4, 374–93. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15211-5_32.
Pełny tekst źródłaLiu, Yuwei, Zheng Chen i Yaofeng Liu. "Numerical Investigation of RCS Jet Interaction on a Hypersonic Vehicle". W Lecture Notes in Electrical Engineering, 485–98. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_40.
Pełny tekst źródłaCaunii, Vasile, i Adrian Sachelarie. "Simulation of the Air Conditioning Curtains with Turbulent Circular Jet Flows Inside the Cabin Vehicle Using ANSYS CFD". W Proceedings of the European Automotive Congress EAEC-ESFA 2015, 357–66. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27276-4_33.
Pełny tekst źródłaLahaussois, Dorothee, Heather Hamje, Per Hanarp, Laura Lonza, Yugo Marta i Heiko Maas. "Fueling clean transport to 2025+: update of JEC Well-To-Wheel (WTW) methodology for comparing alternative fuels and vehicle options to 2025+". W Proceedings, 385–93. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-21015-1_25.
Pełny tekst źródłaGuo, Shuxiang, i Xichuan Li. "Development of a Vectored Water-Jet-Based Spherical Underwater Vehicle". W Autonomous Underwater Vehicles. InTech, 2011. http://dx.doi.org/10.5772/24087.
Pełny tekst źródłaMehta, Rakhab. "Analysis of supersonic free jets and impinging supersonic jets on deflector". W Simulation Modeling - Recent Advances, New Perspectives, and Applications [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1002372.
Pełny tekst źródłaOdetti, Angelo, Marco Altosole, Marco Bibuli, Gabriele Bruzzone, Massimo Caccia i Michele Viviani. "Advance Speed-Hull-Pump-Jet Interactions in Small ASV". W Progress in Marine Science and Technology. IOS Press, 2020. http://dx.doi.org/10.3233/pmst200043.
Pełny tekst źródłaSuzuki, Toshiyuki, Satoshi Nonaka i Yoshifumi Inatani. "Numerical Analysis of Supersonic Jet Flow from Vertical Landing Rocket Vehicle in Landing Phase". W Parallel Computational Fluid Dynamics 2006, 253–60. Elsevier, 2007. http://dx.doi.org/10.1016/b978-044453035-6/50034-1.
Pełny tekst źródłaAli Mergheni, Mohamed, Mohamed Mahdi Belhajbrahim, Toufik Boushaki i Jean-Charles Sautet. "A New Combustion Method in a Burner with Three Separate Jets". W Numerical and Experimental Studies on Combustion Engines and Vehicles. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.90571.
Pełny tekst źródłaStreszczenia konferencji na temat "Jet Vehicle"
Huh, Jinbum, i Seungsoo Lee. "Numerical Study on Jet Interaction of Flight Vehicle with Multi-Species Jet". W 2018 AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-1270.
Pełny tekst źródłaHolmes, Christopher, William S. Brocklesby, Christopher Wood, Jeremy G. Frey, Peter G. R. Smith, Senta L. Jantzen, Naruo Yoshikawa i in. "Mapping Water Contamination of Jet Fuel". W 2019 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP). IEEE, 2019. http://dx.doi.org/10.1109/avfop.2019.8908177.
Pełny tekst źródłaGee, Kent L., Seiji Tsutsumi, Janice Houston i Alan T. Wall. "Summary of “Acoustics of Supersonic Jets: Launch Vehicle and Military Jet Acoustics”". W 172nd Meeting of the Acoustical Society of America. Acoustical Society of America, 2016. http://dx.doi.org/10.1121/2.0000448.
Pełny tekst źródłaLee, SangWook. "Vehicle Aerodynamic Drag Reduction Using Air Jet System". W ASME 2017 Conference on Information Storage and Processing Systems collocated with the ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/isps2017-5442.
Pełny tekst źródłaNichols, J., Ali Moslemi i Paul Krueger. "Performance of a Self-Propelled Pulsed-Jet Vehicle". W 38th Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-3720.
Pełny tekst źródłaBartow, William Bradford, Andres C. Moreyra, Trevor Hirst, Gregory H. Woyczynski, Alexis Lefebvre i Gecheng Zha. "Experimental Investigations of Vehicle Base Drag Reduction Using Passive Jet Boat-Tail Flow Control". W SAE 2014 Commercial Vehicle Engineering Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2014. http://dx.doi.org/10.4271/2014-01-2448.
Pełny tekst źródłaGutman, Shaul. "Nose Jet Guidance and Control for Exoatmospheric Kill-Vehicle". W AIAA Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-6568.
Pełny tekst źródłaHuang, Shuling, Yuru Xu, Yongjie Pang, Tiedong Zhang i Gongxing Wu. "Maneuvering simulation for water-jet propulsion unmanned surface vehicle". W 2011 6th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2011. http://dx.doi.org/10.1109/iciea.2011.5975876.
Pełny tekst źródłaSuzuki, Toshiyuki, Satoshi Nonaka i Yoshifumi Inatani. "Computations of Opposing Jet from Vertical Landing Rocket Vehicle". W 24th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-3329.
Pełny tekst źródłaBoretti, Alberto. "Direct Injection and Spark Controlled Jet Ignition to Convert A Diesel Truck Engine to LPG". W SAE 2010 Commercial Vehicle Engineering Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010. http://dx.doi.org/10.4271/2010-01-1976.
Pełny tekst źródłaRaporty organizacyjne na temat "Jet Vehicle"
Robinson, P., i J. McDougal. Effect of JP-8 Vehicle on Dermal Penetration of Hydrocarbon Components from Jet Fuel. Fort Belvoir, VA: Defense Technical Information Center, marzec 2000. http://dx.doi.org/10.21236/ada453171.
Pełny tekst źródła