Gotowa bibliografia na temat „Japan Antarctic Expedition”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Japan Antarctic Expedition”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Japan Antarctic Expedition"

1

Sakai, Mitsuaki, Yukio Sato, Shoko Sato, Satoshi Ihara, Masataka Onizuka, Yuzuru Sakakibara i Hideto Takahashi. "Effect of relocating to areas of reduced atmospheric particulate matter levels on the human circulating leukocyte count". Journal of Applied Physiology 97, nr 5 (listopad 2004): 1774–80. http://dx.doi.org/10.1152/japplphysiol.00024.2004.

Pełny tekst źródła
Streszczenie:
A high level of atmospheric particulate matter induces an increase in circulating polymorphonuclear leukocyte (PMN) counts and an increase in serum inflammatory cytokine levels. The particulate level in Antarctica is extremely low compared with that in industrial countries. We hypothesized that this low level would reduce circulating leukocyte counts and serum inflammatory cytokine levels in people visiting Antarctica from industrial countries. The number density of particulates with aerodynamic diameters of <10.0 μm was measured in Japan and in Antarctica during the 41st Japanese Antarctic Research Expedition. Circulating leukocyte counts, granulocyte colony-stimulating factor and interleukin-6 levels, and pulmonary function were determined at regular intervals in 39 expedition members. The particulate number density was <1% of that measured in Japan. Total leukocytes, segmented and band-formed PMN, monocyte counts, and serum interleukin-6 levels decreased in Antarctica compared with the initial values measured in Japan. Pulmonary function parameters did not change except for maximal voluntary ventilation. Particulate matter levels had more significant effects on segmented PMN, band-formed PMN, and monocyte counts than cigarette smoking and the type of work. Exposure to reduced atmospheric particulates is considered to be a major factor for decreasing circulating leukocyte counts and serum cytokine levels.
Style APA, Harvard, Vancouver, ISO itp.
2

Bertler, N., P. A. Mayewski, A. Aristarain, P. Barrett, S. Becagli, R. Bernardo, S. Bo i in. "Snow chemistry across Antarctica". Annals of Glaciology 41 (2005): 167–79. http://dx.doi.org/10.3189/172756405781813320.

Pełny tekst źródła
Streszczenie:
AbstractAn updated compilation of published and new data of major-ion (Ca, Cl, K, Mg, Na, NO3, SO4) and methylsulfonate (MS) concentrations in snow from 520 Antarctic sites is provided by the national ITASE (International Trans-Antarctic Scientific Expedition) programmes of Australia, Brazil, China, Germany, Italy, Japan, Korea, New Zealand, Norway, the United Kingdom, the United States and the national Antarctic programme of Finland. The comparison shows that snow chemistry concentrations vary by up to four orders of magnitude across Antarctica and exhibit distinct geographical patterns. The Antarctic-wide comparison of glaciochemical records provides a unique opportunity to improve our understanding of the fundamental factors that ultimately control the chemistry of snow or ice samples. This paper aims to initiate data compilation and administration in order to provide a framework for facilitation of Antarctic-wide snow chemistry discussions across all ITASE nations and other contributing groups. The data are made available through the ITASE web page (http://www2.umaine.edu/itase/content/syngroups/snowchem.html) and will be updated with new data as they are provided. In addition, recommendations for future research efforts are summarized.
Style APA, Harvard, Vancouver, ISO itp.
3

Sugiyama, Shin, Hiroyuki Enomoto, Shuji Fujita, Kotaro Fukui, Fumio Nakazawa i Per Holmlund. "Dielectric permittivity of snow measured along the route traversed in the Japanese–Swedish Antarctic Expedition 2007/08". Annals of Glaciology 51, nr 55 (2010): 9–15. http://dx.doi.org/10.3189/172756410791392745.

Pełny tekst źródła
Streszczenie:
AbstractAs a joint contribution of Japan and Sweden to the International Polar Year 2007–09, a field expedition between Syowa and Wasa stations in East Antarctica was carried out in the 2007/08 austral summer season. Along the 2800 km long expedition route, the dielectric permittivity of the upper 1 m snow layer was measured at intervals of approximately 50 km using a snow fork, a parallel-wire transmission-line resonator. More than 2000 measurements were performed under carefully calibrated conditions, mostly in the interior of Antarctica. The permittivity ε′ was a function of snow density as in previous studies on dry snow, but the values were significantly smaller than those reported before. In the light of the dielectric mixture theory, the relatively smaller ε′ obtained in this study can be attributed to the snow structures characteristic in the studied region. Our data suggest that the permittivity of snow in the Antarctic interior is significantly affected by weak bonding between snow grains, which is due to depth-hoar formation in the extremely low-temperature conditions.
Style APA, Harvard, Vancouver, ISO itp.
4

Meyer-Rochow, Victor Benno. "Ingredients to become a scientist: curiosity, enthusiasm, perseverance, opportunity, and a good pinch of luck". ICES Journal of Marine Science 77, nr 6 (2.07.2020): 2013–21. http://dx.doi.org/10.1093/icesjms/fsaa102.

Pełny tekst źródła
Streszczenie:
Abstract Writing a 200-word abstract about the life of a 76-year-old scientist, in which luck played a significant role, is not an easy task. Even knowing this scientist well (for I am talking about myself) does not make it any easier. When you notice something is not right, do not fear changing your major (I changed twice before settling on Fisheries and Marine Science). For my PhD in neurobiology, I changed again. Grab opportunities when they arise. Join field trips and expeditions, attend conferences, and spread your interests widely. Spend time in different countries, learn new techniques and languages, and always stay curious. Remain humble. I carried out speleological research in Jamaica and France, participated in a 4-month South Atlantic Fisheries Research Trip and a 3-month Bioluminescence Expedition to the Moluccas, and pioneered comparative physiological and functional anatomical research in Antarctica and the Arctic. Be adventurous. My ethnobiological field work took me to Papua Niugini, NE-India, and Central Australia. Having lived in Australia, Finland, France, Germany, Jamaica, Japan, and New Zealand (I am a New Zealander currently living in Korea) and having spent sabbaticals in Brazil, India, New Caledonia, and North Korea, I consider myself a global scientist. You can become one too.
Style APA, Harvard, Vancouver, ISO itp.
5

Narita, H., S. Mae, M. Nakawo, Y. Fujii, M. Yoshida, K. Kawada i A. Higashi. "Ice-Coring At Mizuho Station, Antarctica, and Core Analyses: A Contribution from the Glaciological Research Program in East Dronning Maud Land, Antarctica". Annals of Glaciology 10 (1988): 213. http://dx.doi.org/10.1017/s0260305500004596.

Pełny tekst źródła
Streszczenie:
Between May 1983 and July 1984 glaciological parties of the 24th and 25th Japanese Antarctic Research Expeditions (JARE–24 and 25) carried out ice-core drilling using a thermal drill, down to 700.5 m depth at Mizuho Station (70°41'53"S, 44°19'54"E), as a part of the Glaciological Research Program in east Dronning Maud Land, Antarctica. The thermal drill, 3.9 m long and capable of taking a core 1.5 m long and 130 mm in diameter, is an improved version of a drill used by JARE–15 in 1975. The most important improvement was the monitoring system during drilling, for which a micro-computer was fitted in the drill. By using this system, such accidents as heater burn-out, tank overflow and failure of water suction would immediately be brought to our attention. The drilling speed was about 1.6 m/h, when the optimum output was 3.6 kW. The core recovery rate was above 99%. The core quality was good down to a depth of 80 m. Between 80 and 120 m, cracks were found at intervals of 0.15–0.5 m, and horizontal cracks were found continuously at intervals of 0.01 m or less. Immediately after the core was pulled, the stratigraphy was observed and bulk density was measured. A dust band, presumably volcanic particles, was seen at only 500.2 m depth during stratigraphic observation. The following analyses were carried out at Mizuho Station within a month of recovery: (1) Density determination by the hydrostatic method. (2) Measurement of total gas content. (3) Thin-section analyses, including observation of cracking around air bubbles and the crystalline texture, and ice-fabric studies. The 700.5 m core has been brought to Japan, and the following analyses are now under way: (1) Oxygen-isotope ratio. (2) Concentration of microparticles. (3) Electric conductivity. (4) Chemistry of soluble impurities.
Style APA, Harvard, Vancouver, ISO itp.
6

Narita, H., S. Mae, M. Nakawo, Y. Fujii, M. Yoshida, K. Kawada i A. Higashi. "Ice-Coring At Mizuho Station, Antarctica, and Core Analyses: A Contribution from the Glaciological Research Program in East Dronning Maud Land, Antarctica". Annals of Glaciology 10 (1988): 213. http://dx.doi.org/10.3189/s0260305500004596.

Pełny tekst źródła
Streszczenie:
Between May 1983 and July 1984 glaciological parties of the 24th and 25th Japanese Antarctic Research Expeditions (JARE–24 and 25) carried out ice-core drilling using a thermal drill, down to 700.5 m depth at Mizuho Station (70°41'53"S, 44°19'54"E), as a part of the Glaciological Research Program in east Dronning Maud Land, Antarctica.The thermal drill, 3.9 m long and capable of taking a core 1.5 m long and 130 mm in diameter, is an improved version of a drill used by JARE–15 in 1975. The most important improvement was the monitoring system during drilling, for which a micro-computer was fitted in the drill. By using this system, such accidents as heater burn-out, tank overflow and failure of water suction would immediately be brought to our attention. The drilling speed was about 1.6 m/h, when the optimum output was 3.6 kW. The core recovery rate was above 99%.The core quality was good down to a depth of 80 m. Between 80 and 120 m, cracks were found at intervals of 0.15–0.5 m, and horizontal cracks were found continuously at intervals of 0.01 m or less.Immediately after the core was pulled, the stratigraphy was observed and bulk density was measured. A dust band, presumably volcanic particles, was seen at only 500.2 m depth during stratigraphic observation. The following analyses were carried out at Mizuho Station within a month of recovery: (1)Density determination by the hydrostatic method.(2)Measurement of total gas content.(3)Thin-section analyses, including observation of cracking around air bubbles and the crystalline texture, and ice-fabric studies.The 700.5 m core has been brought to Japan, and the following analyses are now under way: (1)Oxygen-isotope ratio.(2)Concentration of microparticles.(3)Electric conductivity.(4)Chemistry of soluble impurities.
Style APA, Harvard, Vancouver, ISO itp.
7

Minina, T. R., V. V. Menshutkin i N. N. Filatov. "About mathematical modeling in limnology, oceanology, ecology and economics in the works of V.V. Menchutkin". Fundamental and Applied Hydrophysics 17, nr 2 (21.07.2024): 119–33. http://dx.doi.org/10.59887/2073-6673.2024.17(2)-10.

Pełny tekst źródła
Streszczenie:
The article gives a brief review of the works of Doctor of Biological Sciences, Prof. V.V. Menshutkin for the 65-year period of scientific activity, which began in the 60s of the XX century with experimental works on the hydrophisics of Lake Baikal and the first mathematical models of the perch population of the small lake Kherya-Yarvi (Karelian Isthmus) and fish community in Lake Dalneye (Kamchatka). The latter was of great practical importance when concluding an agreement with Japan on catch quotas for sockeye salmon.V.V. Menshutkin’s range of interests was very wide and included mathematical modeling in biology, physiology, limnology, oceanology, demography, economics, ecology and rational nature management. The works on research of water objects and processes in them include modeling of dynamics of fish and aquatic invertebrate populations, Antarctic krill. He created mathematical models of ecosystems of Ladoga and Onega lakes, and during oceanic expeditions of the Academy of Sciences — of the Sea of Japan and the Peruvian upwelling area.His research in the field of physiology of blood circulation and water-salt metabolism, works related to space subjects, modeling of diagnostics and treatment of mental diseases are interesting. V.V. Menshutkin paid special attention to the issues of biological evolution. V.V. Menshutkin paid special attention to the issues of biological evolution and modeling of evolutionary process. The mathematical apparatus used by V.V. Menshutkin is very broad. The mathematical apparatus used by V.V. Menshutkin is very wide: from systems of differential equations to finite automata, neural networks, fuzzy logic and cognitive modeling (a new direction in artificial intelligence), with which the studies of ecological-socio-economic systems of water bodies catchments were connected.O.P. Savchuk and V.V. Menshutkin united research methods — mathematical modeling and objects under study: oceans, seas and lakes. However, their only joint work was the collective monograph on the results of “Nevskaya Guba” project, which conclusions became the basis for the important decision to complete the construction of the dam in St. Petersburg.
Style APA, Harvard, Vancouver, ISO itp.
8

Nielsen, Hanne E. F., Chloe Lucas i Elizabeth Leane. "Rethinking Tasmania’s Regionality from an Antarctic Perspective: Flipping the Map". M/C Journal 22, nr 3 (19.06.2019). http://dx.doi.org/10.5204/mcj.1528.

Pełny tekst źródła
Streszczenie:
IntroductionTasmania hangs from the map of Australia like a drop in freefall from the substance of the mainland. Often the whole state is mislaid from Australian maps and logos (Reddit). Tasmania has, at least since federation, been considered peripheral—a region seen as isolated, a ‘problem’ economically, politically, and culturally. However, Tasmania not only cleaves to the ‘north island’ of Australia but is also subject to the gravitational pull of an even greater land mass—Antarctica. In this article, we upturn the political conventions of map-making that place both Antarctica and Tasmania in obscure positions at the base of the globe. We show how a changing global climate re-frames Antarctica and the Southern Ocean as key drivers of worldwide environmental shifts. The liquid and solid water between Tasmania and Antarctica is revealed not as a homogenous barrier, but as a dynamic and relational medium linking the Tasmanian archipelago with Antarctica. When Antarctica becomes the focus, the script is flipped: Tasmania is no longer on the edge, but core to a network of gateways into the southern land. The state’s capital of Hobart can from this perspective be understood as an “Antarctic city”, central to the geopolitics, economy, and culture of the frozen continent (Salazar et al.). Viewed from the south, we argue, Tasmania is not a problem, but an opportunity for a form of ecological, cultural, economic, and political sustainability that opens up the southern continent to science, discovery, and imagination.A Centre at the End of the Earth? Tasmania as ParadoxThe islands of Tasmania owe their existence to climate change: a period of warming at the end of the last ice age melted the vast sheets of ice covering the polar regions, causing sea levels to rise by more than one hundred metres (Tasmanian Climate Change Office 8). Eleven thousand years ago, Aboriginal people would have witnessed the rise of what is now called Bass Strait, turning what had been a peninsula into an archipelago, with the large island of Tasmania at its heart. The heterogeneous practices and narratives of Tasmanian regional identity have been shaped by the geography of these islands, and their connection to the Southern Ocean and Antarctica. Regions, understood as “centres of collective consciousness and sociospatial identities” (Paasi 241) are constantly reproduced and reimagined through place-based social practices and communications over time. As we will show, diverse and contradictory narratives of Tasmanian regionality often co-exist, interacting in complex and sometimes complementary ways. Ecocritical literary scholar C.A. Cranston considers duality to be embedded in the textual construction of Tasmania, writing “it was hell, it was heaven, it was penal, it was paradise” (29). Tasmania is multiply polarised: it is both isolated and connected; close and far away; rich in resources and poor in capital; the socially conservative birthplace of radical green politics (Hay 60). The weather, as if sensing the fine balance of these paradoxes, blows hot and cold at a moment’s notice.Tasmania has wielded extraordinary political influence at times in its history—notably during the settlement of Melbourne in 1835 (Boyce), and during protests against damming the Franklin River in the early 1980s (Mercer). However, twentieth-century historical and political narratives of Tasmania portray the Bass Strait as a barrier, isolating Tasmanians from the mainland (Harwood 61). Sir Bede Callaghan, who headed one of a long line of federal government inquiries into “the Tasmanian problem” (Harwood 106), was clear that Tasmania was a victim of its own geography:the major disability facing the people of Tasmania (although some residents may consider it an advantage) is that Tasmania is an island. Separation from the mainland adversely affects the economy of the State and the general welfare of the people in many ways. (Callaghan 3)This perspective may stem from the fact that Tasmania has maintained the lowest Gross Domestic Product per capita of all states since federation (Bureau of Infrastructure Transport and Regional Economics 9). Socially, economically, and culturally, Tasmania consistently ranks among the worst regions of Australia. Statistical comparisons with other parts of Australia reveal the population’s high unemployment, low wages, poor educational outcomes, and bad health (West 31). The state’s remoteness and isolation from the mainland states and its reliance on federal income have contributed to the whole of Tasmania, including Hobart, being classified as ‘regional’ by the Australian government, in an attempt to promote immigration and economic growth (Department of Infrastructure and Regional Development 1). Tasmania is indeed both regional and remote. However, in this article we argue that, while regionality may be cast as a disadvantage, the island’s remote location is also an asset, particularly when viewed from a far southern perspective (Image 1).Image 1: Antarctica (Orthographic Projection). Image Credit: Wikimedia Commons, Modified Shading of Tasmania and Addition of Captions by H. Nielsen.Connecting Oceans/Collapsing DistanceTasmania and Antarctica have been closely linked in the past—the future archipelago formed a land bridge between Antarctica and northern land masses until the opening of the Tasman Seaway some 32 million years ago (Barker et al.). The far south was tangible to the Indigenous people of the island in the weather blowing in from the Southern Ocean, while the southern lights, or “nuyina”, formed a visible connection (Australia’s new icebreaker vessel is named RSV Nuyina in recognition of these links). In the contemporary Australian imagination, Tasmania tends to be defined by its marine boundaries, the sea around the islands represented as flat, empty space against which to highlight the topography of its landscape and the isolation of its position (Davies et al.). A more relational geographic perspective illuminates the “power of cross-currents and connections” (Stratford et al. 273) across these seascapes. The sea country of Tasmania is multiple and heterogeneous: the rough, shallow waters of the island-scattered Bass Strait flow into the Tasman Sea, where the continental shelf descends toward an abyssal plain studded with volcanic seamounts. To the south, the Southern Ocean provides nutrient-rich upwellings that attract fish and cetacean populations. Tasmania’s coast is a dynamic, liminal space, moving and changing in response to the global currents that are driven by the shifting, calving and melting ice shelves and sheets in Antarctica.Oceans have long been a medium of connection between Tasmania and Antarctica. In the early colonial period, when the seas were the major thoroughfares of the world and inland travel was treacherous and slow, Tasmania’s connection with the Southern Ocean made it a valuable hub for exploration and exploitation of the south. Between 1642 and 1900, early European explorers were followed by British penal colonists, convicts, sealers, and whalers (Kriwoken and Williamson 93). Tasmania was well known to polar explorers, with expeditions led by Jules Dumont d’Urville, James Clark Ross, Roald Amundsen, and Douglas Mawson all transiting through the port of Hobart. Now that the city is no longer a whaling hub, growing populations of cetaceans continue to migrate past the islands on their annual journeys from the tropics, across the Sub-Antarctic Front and Antarctic circumpolar current, and into the south polar region, while southern species such as leopard seals are occasionally seen around Tasmania (Tasmania Parks and Wildlife). Although the water surrounding Tasmania and Antarctica is at times homogenised as a ‘barrier’, rendering these places isolated, the bodies of water that surround both are in fact permeable, and regularly crossed by both humans and marine species. The waters are diverse in their physical characteristics, underlying topography, sea life, and relationships, and serve to connect many different ocean regions, ecosystems, and weather patterns.Views from the Far SouthWhen considered in terms of its relative proximity to Antarctic, rather than its distance from Australia’s political and economic centres, Tasmania’s identity undergoes a significant shift. A sign at Cockle Creek, in the state’s far south, reminds visitors that they are closer to Antarctica than to Cairns, invoking a discourse of connectedness that collapses the standard ten-day ship voyage to Australia’s closest Antarctic station into a unit comparable with the routinely scheduled 5.5 hour flight to North Queensland. Hobart is the logistical hub for the Australian Antarctic Division and the French Institut Polaire Francais (IPEV), and has hosted Antarctic vessels belonging to the USA, South Korea, and Japan in recent years. From a far southern perspective, Hobart is not a regional Australian capital but a global polar hub. This alters the city’s geographic imaginary not only in a latitudinal sense—from “top down” to “bottom up”—but also a longitudinal one. Via its southward connection to Antarctica, Hobart is also connected east and west to four other recognized gateways: Cape Town in South Africa, Christchurch in New Zealand; Punta Arenas in Chile; and Ushuaia in Argentina (Image 2). The latter cities are considered small by international standards, but play an outsized role in relation to Antarctica.Image 2: H. Nielsen with a Sign Announcing Distances between Antarctic ‘Gateway’ Cities and Antarctica, Ushuaia, Argentina, 2018. Image Credit: Nicki D'Souza.These five cities form what might be called—to adapt geographer Klaus Dodds’ term—a ‘Southern Rim’ around the South Polar region (Dodds Geopolitics). They exist in ambiguous relationship to each other. Although the five cities signed a Statement of Intent in 2009 committing them to collaboration, they continue to compete vigorously for northern hemisphere traffic and the brand identity of the most prominent global gateway. A state government brochure spruiks Hobart, for example, as the “perfect Antarctic Gateway” emphasising its uniqueness and “natural advantages” in this regard (Tasmanian Government, 2016). In practice, the cities are automatically differentiated by their geographic position with respect to Antarctica. Although the ‘ice continent’ is often conceived as one entity, it too has regions, in both scientific and geographical senses (Terauds and Lee; Antonello). Hobart provides access to parts of East Antarctica, where the Australian, French, Japanese, and Chinese programs (among others) have bases; Cape Town is a useful access point for Europeans going to Dronning Maud Land; Christchurch is closest to the Ross Sea region, site of the largest US base; and Punta Arenas and Ushuaia neighbour the Antarctic Peninsula, home to numerous bases as well as a thriving tourist industry.The Antarctic sector is important to the Tasmanian economy, contributing $186 million (AUD) in 2017/18 (Wells; Gutwein; Tasmanian Polar Network). Unsurprisingly, Tasmania’s gateway brand has been actively promoted, with the 2016 Australian Antarctic Strategy and 20 Year Action Plan foregrounding the need to “Build Tasmania’s status as the premier East Antarctic Gateway for science and operations” and the state government releasing a “Tasmanian Antarctic Gateway Strategy” in 2017. The Chinese Antarctic program has been a particular focus: a Memorandum of Understanding focussed on Australia and China’s Antarctic relations includes a “commitment to utilise Australia, including Tasmania, as an Antarctic ‘gateway’.” (Australian Antarctic Division). These efforts towards a closer relationship with China have more recently come under attack as part of a questioning of China’s interests in the region (without, it should be noted, a concomitant questioning of Australia’s own considerable interests) (Baker 9). In these exchanges, a global power and a state of Australia generally classed as regional and peripheral are brought into direct contact via the even more remote Antarctic region. This connection was particularly visible when Chinese President Xi Jinping travelled to Hobart in 2014, in a visit described as both “strategic” and “incongruous” (Burden). There can be differences in how this relationship is narrated to domestic and international audiences, with issues of sovereignty and international cooperation variously foregrounded, laying the ground for what Dodds terms “awkward Antarctic nationalism” (1).Territory and ConnectionsThe awkwardness comes to a head in Tasmania, where domestic and international views of connections with the far south collide. Australia claims sovereignty over almost 6 million km2 of the Antarctic continent—a claim that in area is “roughly the size of mainland Australia minus Queensland” (Bergin). This geopolitical context elevates the importance of a regional part of Australia: the claims to Antarctic territory (which are recognised only by four other claimant nations) are performed not only in Antarctic localities, where they are made visible “with paraphernalia such as maps, flags, and plaques” (Salazar 55), but also in Tasmania, particularly in Hobart and surrounds. A replica of Mawson’s Huts in central Hobart makes Australia’s historic territorial interests in Antarctica visible an urban setting, foregrounding the figure of Douglas Mawson, the well-known Australian scientist and explorer who led the expeditions that proclaimed Australia’s sovereignty in the region of the continent roughly to its south (Leane et al.). Tasmania is caught in a balancing act, as it fosters international Antarctic connections (such hosting vessels from other national programs), while also playing a key role in administering what is domestically referred to as the Australian Antarctic Territory. The rhetoric of protection can offer common ground: island studies scholar Godfrey Baldacchino notes that as island narratives have moved “away from the perspective of the ‘explorer-discoverer-colonist’” they have been replaced by “the perspective of the ‘custodian-steward-environmentalist’” (49), but reminds readers that a colonising disposition still lurks beneath the surface. It must be remembered that terms such as “stewardship” and “leadership” can undertake sovereignty labour (Dodds “Awkward”), and that Tasmania’s Antarctic connections can be mobilised for a range of purposes. When Environment Minister Greg Hunt proclaimed at a press conference that: “Hobart is the gateway to the Antarctic for the future” (26 Apr. 2016), the remark had meaning within discourses of both sovereignty and economics. Tasmania’s capital was leveraged as a way to position Australia as a leader in the Antarctic arena.From ‘Gateway’ to ‘Antarctic City’While discussion of Antarctic ‘Gateway’ Cities often focuses on the economic and logistical benefit of their Antarctic connections, Hobart’s “gateway” identity, like those of its counterparts, stretches well beyond this, encompassing geological, climatic, historical, political, cultural and scientific links. Even the southerly wind, according to cartoonist Jon Kudelka, “has penguins in it” (Image 3). Hobart residents feel a high level of connection to Antarctica. In 2018, a survey of 300 randomly selected residents of Greater Hobart was conducted under the umbrella of the “Antarctic Cities” Australian Research Council Linkage Project led by Assoc. Prof. Juan Francisco Salazar (and involving all three present authors). Fourteen percent of respondents reported having been involved in an economic activity related to Antarctica, and 36% had attended a cultural event about Antarctica. Connections between the southern continent and Hobart were recognised as important: 71.9% agreed that “people in my city can influence the cultural meanings that shape our relationship to Antarctica”, while 90% agreed or strongly agreed that Hobart should play a significant role as a custodian of Antarctica’s future, and 88.4% agreed or strongly agreed that: “How we treat Antarctica is a test of our approach to ecological sustainability.” Image 3: “The Southerly” Demonstrates How Weather Connects Hobart and Antarctica. Image Credit: Jon Kudelka, Reproduced with Permission.Hobart, like the other gateways, activates these connections in its conscious place-branding. The city is particularly strong as a centre of Antarctic research: signs at the cruise-ship terminal on the waterfront claim that “There are more Antarctic scientists based in Hobart […] than at any other one place on earth, making Hobart a globally significant contributor to our understanding of Antarctica and the Southern Ocean.” Researchers are based at the Institute for Marine and Antarctic Studies (IMAS), the Commonwealth Scientific and Industrial Research Organisation (CSIRO), and the Australian Antarctic Division (AAD), with several working between institutions. Many Antarctic researchers located elsewhere in the world also have a connection with the place through affiliations and collaborations, leading journalist Jo Chandler to assert that “the breadth and depth of Hobart’s knowledge of ice, water, and the life forms they nurture […] is arguably unrivalled anywhere in the world” (86).Hobart also plays a significant role in Antarctica’s governance, as the site of the secretariats for the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) and the Agreement on the Conservation of Albatrosses and Petrels (ACAP), and as host of the Antarctic Consultative Treaty Meetings on more than one occasion (1986, 2012). The cultural domain is active, with Tasmanian Museum and Art Gallery (TMAG) featuring a permanent exhibit, “Islands to Ice”, emphasising the ocean as connecting the two places; the Mawson’s Huts Replica Museum aiming (among other things) to “highlight Hobart as the gateway to the Antarctic continent for the Asia Pacific region”; and a biennial Australian Antarctic Festival drawing over twenty thousand visitors, about a sixth of them from interstate or overseas (Hingley). Antarctic links are evident in the city’s natural and built environment: the dolerite columns of Mt Wellington, the statue of the Tasmanian Antarctic explorer Louis Bernacchi on the waterfront, and the wharfs that regularly accommodate icebreakers such as the Aurora Australis and the Astrolabe. Antarctica is figured as a southern neighbour; as historian Tom Griffiths puts it, Tasmanians “grow up with Antarctica breathing down their necks” (5). As an Antarctic City, Hobart mediates access to Antarctica both physically and in the cultural imaginary.Perhaps in recognition of the diverse ways in which a region or a city might be connected to Antarctica, researchers have recently been suggesting critical approaches to the ‘gateway’ label. C. Michael Hall points to a fuzziness in the way the term is applied, noting that it has drifted from its initial definition (drawn from economic geography) as denoting an access and supply point to a hinterland that produces a certain level of economic benefits. While Hall looks to keep the term robustly defined to avoid empty “local boosterism” (272–73), Gabriela Roldan aims to move the concept “beyond its function as an entry and exit door”, arguing that, among other things, the local community should be actively engaged in the Antarctic region (57). Leane, examining the representation of Hobart as a gateway in historical travel texts, concurs that “ingress and egress” are insufficient descriptors of Tasmania’s relationship with Antarctica, suggesting that at least discursively the island is positioned as “part of an Antarctic rim, itself sharing qualities of the polar region” (45). The ARC Linkage Project described above, supported by the Hobart City Council, the State Government and the University of Tasmania, as well as other national and international partners, aims to foster the idea of the Hobart and its counterparts as ‘Antarctic cities’ whose citizens act as custodians for the South Polar region, with a genuine concern for and investment in its future.Near and Far: Local Perspectives A changing climate may once again herald a shift in the identity of the Tasmanian islands. Recognition of the central role of Antarctica in regulating the global climate has generated scientific and political re-evaluation of the region. Antarctica is not only the planet’s largest heat sink but is the engine of global water currents and wind patterns that drive weather patterns and biodiversity across the world (Convey et al. 543). For example, Tas van Ommen’s research into Antarctic glaciology shows the tangible connection between increased snowfall in coastal East Antarctica and patterns of drought southwest Western Australia (van Ommen and Morgan). Hobart has become a global centre of marine and Antarctic science, bringing investment and development to the city. As the global climate heats up, Tasmania—thanks to its low latitude and southerly weather patterns—is one of the few regions in Australia likely to remain temperate. This is already leading to migration from the mainland that is impacting house prices and rental availability (Johnston; Landers 1). The region’s future is therefore closely entangled with its proximity to the far south. Salazar writes that “we cannot continue to think of Antarctica as the end of the Earth” (67). Shifting Antarctica into focus also brings Tasmania in from the margins. As an Antarctic city, Hobart assumes a privileged positioned on the global stage. This allows the city to present itself as central to international research efforts—in contrast to domestic views of the place as a small regional capital. The city inhabits dual identities; it is both on the periphery of Australian concerns and at the centre of Antarctic activity. Tasmania, then, is not in freefall, but rather at the forefront of a push to recognise Antarctica as entangled with its neighbours to the north.AcknowledgementsThis work was supported by the Australian Research Council under LP160100210.ReferencesAntonello, Alessandro. “Finding Place in Antarctica.” Antarctica and the Humanities. Eds. Peder Roberts, Lize-Marie van der Watt, and Adrian Howkins. London: Palgrave Macmillan, 2016. 181–204.Australian Government. Australian Antarctic Strategy and 20 Year Action Plan. Canberra: Commonwealth of Australia, 2016. 15 Apr. 2019. <http://www.antarctica.gov.au/__data/assets/pdf_file/0008/180827/20YearStrategy_final.pdf>.Australian Antarctic Division. “Australia-China Collaboration Strengthens.” Australian Antarctic Magazine 27 Dec. 2014. 15 Apr. 2019. <http://www.antarctica.gov.au/magazine/2011-2015/issue-27-december-2014/in-brief/australia-china-collaboration-strengthens>.Baker, Emily. “Worry at Premier’s Defence of China.” The Mercury 15 Sep. 2018: 9.Baldacchino, G. “Studying Islands: On Whose Terms?” Island Studies Journal 3.1 (2008): 37–56.Barker, Peter F., Gabriel M. Filippelli, Fabio Florindo, Ellen E. Martin, and Howard D. Schere. “Onset and Role of the Antarctic Circumpolar Current.” Deep Sea Research Part II: Topical Studies in Oceanography. 54.21–22 (2007): 2388–98.Bergin, Anthony. “Australia Needs to Strengthen Its Strategic Interests in Antarctica.” Australian Strategic Policy Institute. 29 Apr. 2016. 21 Feb. 2019 <https://www.aspi.org.au/index.php/opinion/australia-needs-strengthen-its-strategic-interests-antarctica>.Boyce, James. 1835: The Founding of Melbourne and the Conquest of Australia. Melbourne: Black Inc., 2011.Burden, Hilary. “Xi Jinping's Tasmania Visit May Seem Trivial, But Is Full of Strategy.” The Guardian 18 Nov. 2014. 19 May 2019 <https://www.theguardian.com/world/2014/nov/18/xi-jinpings-tasmania-visit-lacking-congruity-full-of-strategy>.Bureau of Infrastructure Transport and Regional Economics (BITRE). A Regional Economy: A Case Study of Tasmania. Canberra: Commonwealth of Australia, 2008. 14 May 2019 <http://www.bitre.gov.au/publications/86/Files/report116.pdf>.Chandler, Jo. “The Science Laboratory: From Little Things, Big Things Grow.” Griffith Review: Tasmania: The Tipping Point? 29 (2013) 83–101.Christchurch City Council. Statement of Intent between the Southern Rim Gateway Cities to the Antarctic: Ushuaia, Punta Arenas, Christchurch, Hobart and Cape Town. 25 Sep. 2009. 11 Apr. 2019 <http://archived.ccc.govt.nz/Council/proceedings/2009/September/CnclCover24th/Clause8Attachment.pdf>.Convey, P., R. Bindschadler, G. di Prisco, E. Fahrbach, J. Gutt, D.A. Hodgson, P.A. Mayewski, C.P. Summerhayes, J. Turner, and ACCE Consortium. “Antarctic Climate Change and the Environment.” Antarctic Science 21.6 (2009): 541–63.Cranston, C. “Rambling in Overdrive: Travelling through Tasmanian Literature.” Tasmanian Historical Studies 8.2 (2003): 28–39.Davies, Lynn, Margaret Davies, and Warren Boyles. Mapping Van Diemen’s Land and the Great Beyond: Rare and Beautiful Maps from the Royal Society of Tasmania. Hobart: The Royal Society of Tasmania, 2018.Department of Infrastructure and Regional Development. Guidelines for Analysing Regional Australia Impacts and Developing a Regional Australia Impact Statement. Canberra: Commonwealth of Australia, 2017. 11 Apr. 2019 <https://regional.gov.au/regional/information/rais/>.Dodds, Klaus. “Awkward Antarctic Nationalism: Bodies, Ice Cores and Gateways in and beyond Australian Antarctic Territory/East Antarctica.” Polar Record 53.1 (2016): 16–30.———. Geopolitics in Antarctica: Views from the Southern Oceanic Rim. Chichester: John Wiley, 1997.Griffiths, Tom. “The Breath of Antarctica.” Tasmanian Historical Studies 11 (2006): 4–14.Gutwein, Peter. “Antarctic Gateway Worth $186 Million to Tasmanian Economy.” Hobart: Tasmanian Government, 20 Feb. 2019. 21 Feb. 2019 <http://www.premier.tas.gov.au/releases/antarctic_gateway_worth_$186_million_to_tasmanian_economy>.Hall, C. Michael. “Polar Gateways: Approaches, Issues and Review.” The Polar Journal 5.2 (2015): 257–77. Harwood Andrew. “The Political Constitution of Islandness: The ‘Tasmanian Problem’ and Ten Days on the Island.” PhD Thesis. U of Tasmania, 2011. <http://eprints.utas.edu.au/11855/%5Cninternal-pdf://5288/11855.html>.Hay, Peter. “Destabilising Tasmanian Politics: The Key Role of the Greens.” Bulletin of the Centre for Tasmanian Historical Studies 3.2 (1991): 60–70.Hingley, Rebecca. Personal Communication, 28 Nov. 2018.Johnston, P. “Is the First Wave of Climate Migrants Landing in Hobart?” The Fifth Estate 11 Sep. 2018. 15 Mar. 2019 <https://www.thefifthestate.com.au/urbanism/climate-change-news/climate-migrants-landing-hobart>.Kriwoken, L., and J. Williamson. “Hobart, Tasmania: Antarctic and Southern Ocean Connections.” Polar Record 29.169 (1993): 93–102.Kudelka, John. “The Southerly.” Kudelka Cartoons. 27 Jun. 2014. 21 Feb. 2019 <https://www.kudelka.com.au/2014/06/the-southerly/>.Leane, E., T. Winter, and J.F. Salazar. “Caught between Nationalism and Internationalism: Replicating Histories of Antarctica in Hobart.” International Journal of Heritage Studies 22.3 (2016): 214–27. Leane, Elizabeth. “Tasmania from Below: Antarctic Travellers’ Accounts of a Southern ‘Gateway’.” Studies in Travel Writing 20.1 (2016): 34-48.Mawson’s Huts Replica Museum. “Mission Statement.” 15 Apr. 2019 <http://www.mawsons-huts-replica.org.au/>.Mercer, David. "Australia's Constitution, Federalism and the ‘Tasmanian Dam Case’." Political Geography Quarterly 4.2 (1985): 91–110.Paasi, A. “Deconstructing Regions: Notes on the Scales of Spatial Life.” Environment and Planning A: Economy and Space 23.2 (1991) 239–56.Reddit. “Maps without Tasmania.” 15 Apr. 2019 <https://www.reddit.com/r/MapsWithoutTasmania/>.Roldan, Gabriela. “'A Door to the Ice?: The Significance of the Antarctic Gateway Cities Today.” Journal of Antarctic Affairs 2 (2015): 57–70.Salazar, Juan Francisco. “Geographies of Place-Making in Antarctica: An Ethnographic Epproach.” The Polar Journal 3.1 (2013): 53–71.———, Elizabeth Leane, Liam Magee, and Paul James. “Five Cities That Could Change the Future of Antarctica.” The Conversation 5 Oct. 2016. 19 May 2019 <https://theconversation.com/five-cities-that-could-change-the-future-of-antarctica-66259>.Stratford, Elaine, Godfrey Baldacchino, Elizabeth McMahon, Carol Farbotko, and Andrew Harwood. “Envisioning the Archipelago.” Island Studies Journal 6.2 (2011): 113–30.Tasmanian Climate Change Office. Derivation of the Tasmanian Sea Level Rise Planning Allowances. Aug. 2012. 17 Apr. 2019 <http://www.dpac.tas.gov.au/__data/assets/pdf_file/0003/176331/Tasmanian_SeaLevelRisePlanningAllowance_TechPaper_Aug2012.pdf>.Tasmanian Government Department of State Growth. “Tasmanian Antarctic Gateway Strategy.” Hobart: Tasmanian Government, 12 Dec. 2017. 21 Feb. 2019 <https://www.antarctic.tas.gov.au/__data/assets/pdf_file/0004/164749/Tasmanian_Antarctic_Gateway_Strategy_12_Dec_2017.pdf>.———. “Tasmania Delivers…” Apr. 2016. 15 Apr. 2019 <https://www.antarctic.tas.gov.au/__data/assets/pdf_file/0005/66461/Tasmania_Delivers_Antarctic_Southern_Ocean_web.pdf>.———. “Antarctic Tasmania.” 17 Feb. 2019. 15 Apr. 2019 <https://www.antarctic.tas.gov.au/about/hobarts_antarctic_attractions>.Tasmanian Polar Network. “Welcome to the Tasmanian Polar Network.” 28 Feb. 2019 <https://www.tasmanianpolarnetwork.com.au/>.Terauds, Aleks, and Jasmine Lee. “Antarctic Biogeography Revisited: Updating the Antarctic Conservation Biogeographic Regions.” Diversity and Distributions 22 (2016): 836–40.Van Ommen, Tas, and Vin Morgan. “Snowfall Increase in Coastal East Antarctica Linked with Southwest Western Australian Drought.” Nature Geoscience 3 (2010): 267–72.Wells Economic Analysis. The Contribution of the Antarctic and Southern Ocean Sector to the Tasmanian Economy 2017. 18 Nov. 2018. 15 Apr. 2019 <https://www.stategrowth.tas.gov.au/__data/assets/pdf_file/0010/185671/Wells_Report_on_the_Value_of_the_Antarctic_Sector_2017_18.pdf>.West, J. “Obstacles to Progress: What’s Wrong with Tasmania, Really?” Griffith Review: Tasmania: The Tipping Point? 39 (2013): 31–53.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii