Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Jacobi-Davidson Iteration.

Artykuły w czasopismach na temat „Jacobi-Davidson Iteration”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 16 najlepszych artykułów w czasopismach naukowych na temat „Jacobi-Davidson Iteration”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Zhao, Jutao, i Pengfei Guo. "A Study on the Convergence Analysis of the Inexact Simplified Jacobi–Davidson Method". Journal of Mathematics 2021 (7.12.2021): 1–10. http://dx.doi.org/10.1155/2021/2123897.

Pełny tekst źródła
Streszczenie:
The Jacobi–Davidson iteration method is very efficient in solving Hermitian eigenvalue problems. If the correction equation involved in the Jacobi–Davidson iteration is solved accurately, the simplified Jacobi–Davidson iteration is equivalent to the Rayleigh quotient iteration which achieves cubic convergence rate locally. When the involved linear system is solved by an iteration method, these two methods are also equivalent. In this paper, we present the convergence analysis of the simplified Jacobi–Davidson method and present the estimate of iteration numbers of the inner correction equation. Furthermore, based on the convergence factor, we can see how the accuracy of the inner iteration controls the outer iteration.
Style APA, Harvard, Vancouver, ISO itp.
2

Kong, Yuan, i Yong Fang. "Behavior of the Correction Equations in the Jacobi–Davidson Method". Mathematical Problems in Engineering 2019 (5.08.2019): 1–4. http://dx.doi.org/10.1155/2019/5169362.

Pełny tekst źródła
Streszczenie:
The Jacobi–Davidson iteration method is efficient for computing several eigenpairs of Hermitian matrices. Although the involved correction equation in the Jacobi–Davidson method has many developed variants, the behaviors of them are not clear for us. In this paper, we aim to explore, theoretically, the convergence property of the Jacobi–Davidson method influenced by different types of correction equations. As a by-product, we derive the optimal expansion vector, which imposed a shift-and-invert transform on a vector located in the prescribed subspace, to expand the current subspace.
Style APA, Harvard, Vancouver, ISO itp.
3

Zhou, Yunkai. "Studies on Jacobi–Davidson, Rayleigh quotient iteration, inverse iteration generalized Davidson and Newton updates". Numerical Linear Algebra with Applications 13, nr 8 (2006): 621–42. http://dx.doi.org/10.1002/nla.490.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Sleijpen, Gerard L. G., i Henk A. Van der Vorst. "A Jacobi--Davidson Iteration Method for Linear Eigenvalue Problems". SIAM Review 42, nr 2 (styczeń 2000): 267–93. http://dx.doi.org/10.1137/s0036144599363084.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

G. Sleijpen, Gerard L., i Henk A. Van der Vorst. "A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems". SIAM Journal on Matrix Analysis and Applications 17, nr 2 (kwiecień 1996): 401–25. http://dx.doi.org/10.1137/s0895479894270427.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Freitag, M. A., i A. Spence. "Rayleigh quotient iteration and simplified Jacobi–Davidson method with preconditioned iterative solves". Linear Algebra and its Applications 428, nr 8-9 (kwiecień 2008): 2049–60. http://dx.doi.org/10.1016/j.laa.2007.11.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Huang, Yin-Liang, Tsung-Ming Huang, Wen-Wei Lin i Wei-Cheng Wang. "A Null Space Free Jacobi--Davidson Iteration for Maxwell's Operator". SIAM Journal on Scientific Computing 37, nr 1 (styczeń 2015): A1—A29. http://dx.doi.org/10.1137/140954714.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Szyld, Daniel B., i Fei Xue. "Efficient Preconditioned Inner Solves For Inexact Rayleigh Quotient Iteration And Their Connections To The Single-Vector Jacobi–Davidson Method". SIAM Journal on Matrix Analysis and Applications 32, nr 3 (lipiec 2011): 993–1018. http://dx.doi.org/10.1137/100807922.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Jia, ZhongXiao, i Zhen Wang. "A convergence analysis of the inexact Rayleigh quotient iteration and simplified Jacobi-Davidson method for the large Hermitian matrix eigenproblem". Science in China Series A: Mathematics 51, nr 12 (26.08.2008): 2205–16. http://dx.doi.org/10.1007/s11425-008-0050-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hochstenbach, Michiel E., i Yvan Notay. "Controlling Inner Iterations in the Jacobi–Davidson Method". SIAM Journal on Matrix Analysis and Applications 31, nr 2 (styczeń 2009): 460–77. http://dx.doi.org/10.1137/080732110.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

van den Eshof, Jasper. "The convergence of Jacobi-Davidson iterations for Hermitian eigenproblems". Numerical Linear Algebra with Applications 9, nr 2 (2002): 163–79. http://dx.doi.org/10.1002/nla.266.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Ferronato, Massimiliano, Carlo Janna i Giorgio Pini. "Parallel Jacobi-Davidson with block FSAI preconditioning and controlled inner iterations". Numerical Linear Algebra with Applications 23, nr 3 (5.01.2016): 394–409. http://dx.doi.org/10.1002/nla.2030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Huang, Jinzhi, i Zhongxiao Jia. "On Inner Iterations of Jacobi--Davidson Type Methods for Large SVD Computations". SIAM Journal on Scientific Computing 41, nr 3 (styczeń 2019): A1574—A1603. http://dx.doi.org/10.1137/18m1192019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Jia, ZhongXiao, i Cen Li. "Inner iterations in the shift-invert residual Arnoldi method and the Jacobi-Davidson method". Science China Mathematics 57, nr 8 (25.02.2014): 1733–52. http://dx.doi.org/10.1007/s11425-014-4791-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Zhao, Wenbo, Yingrui Yu, Xiaoming Chai, Zhonghao Ning, Bin Zhang, Yun Cai, Kun Liu, Xingjie Peng i Junchong Yu. "A SIMPLIFIED TWO-NODE COARSE-MESH FINITE DIFFERENCE METHOD FOR PIN-WISE CALCULATION WITH SP3". EPJ Web of Conferences 247 (2021): 02023. http://dx.doi.org/10.1051/epjconf/202124702023.

Pełny tekst źródła
Streszczenie:
For accurate and efficient pin-by-pin core calculation of SP3 equations, a simplified two-node Coarse Mesh Finite Difference (CMFD) method with the nonlinear iterative strategy is proposed. In this study, the two-node method is only used for discretization of Laplace operator of the 0th moment in the first equation, while the fine mesh finite difference (FMFD) is used for the 2nd moment flux and the second equation. In the two-node problem, transverse flux is expanded to second-order Legendre polynomials. In addition, the associated transverse leakage is approximated with flat distribution. Then the current coupling coefficients are updated in nonlinear iterations. The generalized eigenvalue problem from CMFD is solved using Jacobi-Davidson method. A protype code CORCA-PIN is developed. FMFD scheme is implemented in CORCA-PIN as well. The 2D KAIST 3A benchmark problem and extended 3D problem, which are cell homogenized problems with strong absorber, are tested. Numerical results show that the solution of the simplified two-node method with 1×1 mesh per cell has comparable accuracy of FMFD with 4×4 meshes per cell, but cost less time. The method is suitable for whole core pin-wise calculation.
Style APA, Harvard, Vancouver, ISO itp.
16

Windom, Zachary Wayne, i Rodney J. Bartlett. "On the iterative diagonalization of matrices in quantum chemistry: reconciling preconditioner design with Brillouin-Wigner perturbation theory". Journal of Chemical Physics, 27.02.2023. http://dx.doi.org/10.1063/5.0139295.

Pełny tekst źródła
Streszczenie:
Iterative diagonalization of large matrices to search for a subset of eigenvalues that may be of interest has become routine throughout the field of quantum chemistry. The Lanczos and Davidson algorithms hold a monopoly in particular, owing to their excellent performance on diagonally dominant matrices. However, if the eigenvalues happen to be clustered inside overlapping Gershgorin discs the convergence rate of both strategies can be noticeably degraded. <p>In this work, we show how the Davidson, Jacobi-Davidson, Lanczos, and preconditioned Lanczos correction vectors can be formulated using the Reduced Partitioning Procedure (RPP), which takes advantage of the inherent flexibility promoted by Brillouin-Wigner perturbation theory's (BW-PT) resolvent operator. In doing so, we establish a connection between various preconditioning definitions and the BW-PT resolvent operator. Using Natural Localized Molecular Orbitals (NLMOs) to construct Configuration Interaction Singles (CIS) matrices, we study the impact preconditioner choice has on convergence rate for these comparatively dense matrices. We find that an attractive byproduct of preconditioning the Lanczos algorithm is that the preconditioned variant only needs 21-35% and 54-61% of the matrix-vector operations to extract the lowest energy solution of several Hartree-Fock (HF) and NLMO-based CIS matrices, respectively. On the other hand, the standard Davidson preconditioning definition seems to be generally optimal in terms of requisite matrix-vector operations.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii