Książki na temat „Iron bacteria”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Iron bacteria.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych książek naukowych na temat „Iron bacteria”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

Crosa, Jorge H., Alexandra R. Mey i Shelley M. Payne, red. Iron Transport in Bacteria. Washington, DC, USA: ASM Press, 2004. http://dx.doi.org/10.1128/9781555816544.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

MacLean, Martin. Autotrophy in iron-oxidizing, acidophilic bacteria. [s.l.]: typescript, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hampshire), Conference on Iron Biominerals (1989 University of New. Iron biominerals. New York: Plenum Press, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lazurenko, V. I. Geologicheskai͡a︡ dei͡a︡telʹnostʹ zhelezobakteriĭ. Kiev: Nauk. dumka, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Barr, David William. Comparison of iron oxidation by acidophilic bacteria. [s.l.]: typescript, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Marsh, Rowena Margaret. Thermophilic acidophilic bacteria: Iron, sulphur and mineral oxidation. [s.l.]: typescript, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Geological Survey (U.S.), red. Sites in the Virginia-Washington, D.C.-Maryland metro area to observe or collect bacteria that precipitate iron and manganese oxides. [Reston, Va.?: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Geological Survey (U.S.), red. Sites in the Virginia-Washington, D.C.-Maryland metro area to observe or collect bacteria that precipitate iron and manganese oxides. [Reston, Va.?: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Geological Survey (U.S.), red. Sites in the Virginia-Washington, D.C.-Maryland metro area to observe or collect bacteria that precipitate iron and manganese oxides. [Reston, Va.?: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Geological Survey (U.S.), red. Sites in the Virginia-Washington, D.C.-Maryland metro area to observe or collect bacteria that precipitate iron and manganese oxides. [Reston, Va.?: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Geological Survey (U.S.), red. Sites in the Virginia-Washington, D.C.-Maryland metro area to observe or collect bacteria that precipitate iron and manganese oxides. [Reston, Va.?: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Geological Survey (U.S.), red. Sites in the Virginia-Washington, D.C.-Maryland metro area to observe or collect bacteria that precipitate iron and manganese oxides. [Reston, Va.?: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Geological Survey (U.S.), red. Red slime, black coats, and oily films: The iron and manganese cycles at Huntley Meadows Wetland, Fairfax County, VA : field trip guidebook for Geological Society of Washington. [Reston, Va.?: U.S. Geological Survey, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Geological Survey (U.S.), red. Sites in the Virginia-Washington, D.C.-Maryland metro area to observe or collect bacteria that precipitate iron and manganese oxides. [Reston, Va.?: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Cox, Simon Peter. Iron oxidation and mineral oxidation by moderately thermophilic bacteria. [s.l.]: typescript, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Clark, Darren Alan. The study of acidophilic, moderately thermophilic iron-oxidizing bacteria. [s.l.]: typescript, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Hackett, Glen. Iron bacteria occurrence: Problems and control methods in water wells. Worthington, OH: National Water Well Association, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

J, Bullen J., i Griffiths E. 1940-, red. Iron and infection: Molecular, physiological and clinical aspects. Wyd. 2. Chichester: John Wiley, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Donovan, Joseph J. Iron in Montana's groundwater: How to recognized and manage the problem. Bozeman, MT: Montana Water Resources Center, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Chakraborty, Ranjan, Volkmar Braun, Klaus Hantke i Pierre Cornelis, red. Iron Uptake in Bacteria with Emphasis on E. coli and Pseudomonas. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6088-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Guay, Roger. Development of a modified MPN procedure to enumerate iron oxidizing bacteria: Final report. Ottawa, Ont: Canada Centre for Mineral and Energy Technology = Centre canadien de la technologie des minéraux et de l'énergie, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Pollett, Haemi. Effects of iron on the generation of hydrogen sulfide in a mixed culture containing sulfate-reducing bacteria (SRB) and methane-producing bacteria (MPB). Ottawa: National Library of Canada, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Yates, Jacqueline Marie. Influence of iron on bacterial infections in leukaemia. Birmingham: Aston University. Department of Pharmaceutical Sciences, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

J, Bullen J., i Griffiths E. 1940-, red. Iron and infection: Molecular, physiological, and clinical aspects. Chichester: Wiley, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Cornelis, Pierre, i Simon C. Andrews. Iron uptake and homeostasis in microorganisms. Norfolk, UK: Caister Academic Press, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Tateo, Yamanaka, red. The Electron transfer system in an acidophilic iron-oxidizing bacterium. Tokyo: Academic Press, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Iron transport in bacteria. Washington, DC: ASM Press, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Mey, Alexandra R., Shelley M. Payne i Jorge H. Crosa. Iron Transport in Bacteria. Wiley & Sons, Limited, John, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Ellis, David B. Microbiology of the Iron - Depositing Bacteria. Wexford College Press, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

(Editor), R. Blakemore, i R. Frankel (Editor), red. Iron Biominerals. Springer, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Frankel, R., i R. Blakemore. Iron Biominerals. Springer London, Limited, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Iron Biominerals. Springer, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Ellis, David B. Iron Bacteria - Organisms And Their Identification - Illustrated. Merchant Books, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Red slime, black coats, and oily films: The iron and manganese cycles at Huntley Meadows Wetland, Fairfax County, VA : field trip guidebook for Geological Society of Washington. [Reston, Va.?: U.S. Geological Survey, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Red slime, black coats, and oily films: The iron and manganese cycles at Huntley Meadows Wetland, Fairfax County, VA : field trip guidebook for Geological Society of Washington. [Reston, Va.?: U.S. Geological Survey, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Sites in the Virginia-Washington, D.C.-Maryland metro area to observe or collect bacteria that precipitate iron and manganese oxides. [Reston, Va.?: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Hackett, Glen. Iron Bacteria Occurrence: Problems and Control Methods in Water Wells. Natl Water Well Assn, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Braun, Volkmar, Ranjan Chakraborty i Klaus Hantke. Iron Uptake in Bacteria with Emphasis on E. coli and Pseudomonas. Springer, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

(Editor), D. J. Bullen, i E. Griffiths (Editor), red. Iron and Infection: Molecular, Physiological and Clinical Aspects. Wyd. 2. Wiley, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Taiping yang zhong bu shui--yan xi tong zhong wei sheng wu huo dong ji qi cheng kuang zuo yong ("Taiping yang zhong bu duo jin shu jie he zong he yan jiu"). Xin hua shu dian zong dian ke ji fa xing suo jing xiao, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

(Editor), Jorge H. Crosa, Alexandra R. Mey (Editor) i Shelley M. Payne (Editor), red. Iron Transport In Bacteria: Molecular Genetics, Biochemistry, And Role In Pathogenicity And Ecology. ASM Press, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Iron Uptake in Bacteria with Emphasis on E. coli and Pseudomonas. Springer, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Braun, Volkmar, Pierre Cornelis, Ranjan Chakraborty i Klaus Hantke. Iron Uptake in Bacteria with Emphasis on E. Coli and Pseudomonas. Springer London, Limited, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Winkelmann, Gunther. Handbook of Microbial Iron Chelates (1991). Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Handbook of Microbial Iron Chelates (1991). Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Winkelmann, Gunther. Handbook of Microbial Iron Chelates (1991). Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Kirchman, David L. Introduction to geomicrobiology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0013.

Pełny tekst źródła
Streszczenie:
Geomicrobiology, the marriage of geology and microbiology, is about the impact of microbes on Earth materials in terrestrial systems and sediments. Many geomicrobiological processes occur over long timescales. Even the slow growth and low activity of microbes, however, have big effects when added up over millennia. After reviewing the basics of bacteria–surface interactions, the chapter moves on to discussing biomineralization, which is the microbially mediated formation of solid minerals from soluble ions. The role of microbes can vary from merely providing passive surfaces for mineral formation, to active control of the entire precipitation process. The formation of carbonate-containing minerals by coccolithophorids and other marine organisms is especially important because of the role of these minerals in the carbon cycle. Iron minerals can be formed by chemolithoautotrophic bacteria, which gain a small amount of energy from iron oxidation. Similarly, manganese-rich minerals are formed during manganese oxidation, although how this reaction benefits microbes is unclear. These minerals and others give geologists and geomicrobiologists clues about early life on Earth. In addition to forming minerals, microbes help to dissolve them, a process called weathering. Microbes contribute to weathering and mineral dissolution through several mechanisms: production of protons (acidity) or hydroxides that dissolve minerals; production of ligands that chelate metals in minerals thereby breaking up the solid phase; and direct reduction of mineral-bound metals to more soluble forms. The chapter ends with some comments about the role of microbes in degrading oil and other fossil fuels.
Style APA, Harvard, Vancouver, ISO itp.
48

Zughaier, Susu M., i Pierre Cornelis, red. The Role of Iron in Bacterial Pathogenesis. Frontiers Media SA, 2018. http://dx.doi.org/10.3389/978-2-88945-662-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Kang, Sun Ki. Iron oxidation by Thiobacillus ferrooxidans. 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Kirchman, David L. Processes in anoxic environments. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0011.

Pełny tekst źródła
Streszczenie:
During organic material degradation in oxic environments, electrons from organic material, the electron donor, are transferred to oxygen, the electron acceptor, during aerobic respiration. Other compounds, such as nitrate, iron, sulfate, and carbon dioxide, take the place of oxygen during anaerobic respiration in anoxic environments. The order in which these compounds are used by bacteria and archaea (only a few eukaryotes are capable of anaerobic respiration) is set by thermodynamics. However, concentrations and chemical state also determine the relative importance of electron acceptors in organic carbon oxidation. Oxygen is most important in the biosphere, while sulfate dominates in marine systems, and carbon dioxide in environments with low sulfate concentrations. Nitrate respiration is important in the nitrogen cycle but not in organic material degradation because of low nitrate concentrations. Organic material is degraded and oxidized by a complex consortium of organisms, the anaerobic food chain, in which the by-products from physiological types of organisms becomes the starting material of another. The consortium consists of biopolymer hydrolysis, fermentation, hydrogen gas production, and the reduction of either sulfate or carbon dioxide. The by-product of sulfate reduction, sulfide and other reduced sulfur compounds, is oxidized back eventually to sulfate by either non-phototrophic, chemolithotrophic organisms or by phototrophic microbes. The by-product of another main form of anaerobic respiration, carbon dioxide reduction, is methane, which is produced only by specific archaea. Methane is degraded aerobically by bacteria and anaerobically by some archaea, sometimes in a consortium with sulfate-reducing bacteria. Cultivation-independent approaches focusing on 16S rRNA genes and a methane-related gene (mcrA) have been instrumental in understanding these consortia because the microbes remain uncultivated to date. The chapter ends with some discussion about the few eukaryotes able to reproduce without oxygen. In addition to their ecological roles, anaerobic protists provide clues about the evolution of primitive eukaryotes.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii