Artykuły w czasopismach na temat „IOT BOTNET DETECTION”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „IOT BOTNET DETECTION”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sreeja, B. P. "Survey on Internet of Things Botnet Detection Methodologies: A Report". IRO Journal on Sustainable Wireless Systems 4, nr 3 (15.09.2022): 185–95. http://dx.doi.org/10.36548/jsws.2022.3.005.
Pełny tekst źródłaWazzan, Majda, Daniyal Algazzawi, Omaima Bamasaq, Aiiad Albeshri i Li Cheng. "Internet of Things Botnet Detection Approaches: Analysis and Recommendations for Future Research". Applied Sciences 11, nr 12 (20.06.2021): 5713. http://dx.doi.org/10.3390/app11125713.
Pełny tekst źródłaYang, Changjin, Weili Guan i Zhijie Fang. "IoT Botnet Attack Detection Model Based on DBO-Catboost". Applied Sciences 13, nr 12 (15.06.2023): 7169. http://dx.doi.org/10.3390/app13127169.
Pełny tekst źródłaJovanović, Đorđe, i Pavle Vuletić. "Analysis and characterization of IoT malware command and control communication". Telfor Journal 12, nr 2 (2020): 80–85. http://dx.doi.org/10.5937/telfor2002080j.
Pełny tekst źródłaWazzan, Majda, Daniyal Algazzawi, Aiiad Albeshri, Syed Hasan, Osama Rabie i Muhammad Zubair Asghar. "Cross Deep Learning Method for Effectively Detecting the Propagation of IoT Botnet". Sensors 22, nr 10 (20.05.2022): 3895. http://dx.doi.org/10.3390/s22103895.
Pełny tekst źródłaNegera, Worku Gachena, Friedhelm Schwenker, Taye Girma Debelee, Henock Mulugeta Melaku i Yehualashet Megeresa Ayano. "Review of Botnet Attack Detection in SDN-Enabled IoT Using Machine Learning". Sensors 22, nr 24 (14.12.2022): 9837. http://dx.doi.org/10.3390/s22249837.
Pełny tekst źródłaHaq, Mohd Anul. "DBoTPM: A Deep Neural Network-Based Botnet Prediction Model". Electronics 12, nr 5 (27.02.2023): 1159. http://dx.doi.org/10.3390/electronics12051159.
Pełny tekst źródłaAkash, Nazmus Sakib, Shakir Rouf, Sigma Jahan, Amlan Chowdhury i Jia Uddin. "Botnet Detection in IoT Devices Using Random Forest Classifier with Independent Component Analysis". Journal of Information and Communication Technology 21, No.2 (7.04.2022): 201–32. http://dx.doi.org/10.32890/jict2022.21.2.3.
Pełny tekst źródłaAl-Duwairi, Basheer, Wafaa Al-Kahla, Mhd Ammar AlRefai, Yazid Abedalqader, Abdullah Rawash i Rana Fahmawi. "SIEM-based detection and mitigation of IoT-botnet DDoS attacks". International Journal of Electrical and Computer Engineering (IJECE) 10, nr 2 (1.04.2020): 2182. http://dx.doi.org/10.11591/ijece.v10i2.pp2182-2191.
Pełny tekst źródłaAlharbi, Abdullah, Wael Alosaimi, Hashem Alyami, Hafiz Tayyab Rauf i Robertas Damaševičius. "Botnet Attack Detection Using Local Global Best Bat Algorithm for Industrial Internet of Things". Electronics 10, nr 11 (3.06.2021): 1341. http://dx.doi.org/10.3390/electronics10111341.
Pełny tekst źródłaKaushik, Dr Priyanka. "Unleashing the Power of Multi-Agent Deep Learning: Cyber-Attack Detection in IoT". International Journal for Global Academic & Scientific Research 2, nr 2 (30.06.2023): 23–45. http://dx.doi.org/10.55938/ijgasr.v2i2.46.
Pełny tekst źródłaRezaei, Amirhossein. "Identifying Botnet on IoT by Using Supervised Learning Techniques". Oriental journal of computer science and technology 12, nr 4 (28.10.2019): 185–93. http://dx.doi.org/10.13005/ojcst12.04.04.
Pełny tekst źródłaAbu Al-Haija, Qasem, i Mu’awya Al-Dala’ien. "ELBA-IoT: An Ensemble Learning Model for Botnet Attack Detection in IoT Networks". Journal of Sensor and Actuator Networks 11, nr 1 (9.03.2022): 18. http://dx.doi.org/10.3390/jsan11010018.
Pełny tekst źródłaAlmseidin, Mohammad, i Mouhammd Alkasassbeh. "An Accurate Detection Approach for IoT Botnet Attacks Using Interpolation Reasoning Method". Information 13, nr 6 (14.06.2022): 300. http://dx.doi.org/10.3390/info13060300.
Pełny tekst źródłaBagui, Sikha, Xiaojian Wang i Subhash Bagui. "Machine Learning Based Intrusion Detection for IoT Botnet". International Journal of Machine Learning and Computing 11, nr 6 (listopad 2021): 399–406. http://dx.doi.org/10.18178/ijmlc.2021.11.6.1068.
Pełny tekst źródłaS. Alrayes, Fatma, Mohammed Maray, Abdulbaset Gaddah, Ayman Yafoz, Raed Alsini, Omar Alghushairy, Heba Mohsen i Abdelwahed Motwakel. "Modeling of Botnet Detection Using Barnacles Mating Optimizer with Machine Learning Model for Internet of Things Environment". Electronics 11, nr 20 (21.10.2022): 3411. http://dx.doi.org/10.3390/electronics11203411.
Pełny tekst źródłaAlqahtani, Mnahi, Hassan Mathkour i Mohamed Maher Ben Ismail. "IoT Botnet Attack Detection Based on Optimized Extreme Gradient Boosting and Feature Selection". Sensors 20, nr 21 (6.11.2020): 6336. http://dx.doi.org/10.3390/s20216336.
Pełny tekst źródłaAlkahtani, Hasan, i Theyazn H. H. Aldhyani. "Botnet Attack Detection by Using CNN-LSTM Model for Internet of Things Applications". Security and Communication Networks 2021 (9.09.2021): 1–23. http://dx.doi.org/10.1155/2021/3806459.
Pełny tekst źródłaSoe, Yan Naung, Yaokai Feng, Paulus Insap Santosa, Rudy Hartanto i Kouichi Sakurai. "Machine Learning-Based IoT-Botnet Attack Detection with Sequential Architecture". Sensors 20, nr 16 (5.08.2020): 4372. http://dx.doi.org/10.3390/s20164372.
Pełny tekst źródłaNafir, Abdenacer, Smaine Mazouzi i Salim Chikhi. "Collaborative Life-Cycle-Based Botnet Detection in IoT Using Event Entropy". International Journal of Organizational and Collective Intelligence 10, nr 4 (październik 2020): 19–34. http://dx.doi.org/10.4018/ijoci.2020100102.
Pełny tekst źródłaSajjad, Syed Muhammad, Muhammad Rafiq Mufti, Muhammad Yousaf, Waqar Aslam, Reem Alshahrani, Nadhem Nemri, Humaira Afzal, Muhammad Asghar Khan i Chien-Ming Chen. "Detection and Blockchain-Based Collaborative Mitigation of Internet of Things Botnets". Wireless Communications and Mobile Computing 2022 (20.04.2022): 1–26. http://dx.doi.org/10.1155/2022/1194899.
Pełny tekst źródłaAlissa, Khalid, Tahir Alyas, Kashif Zafar, Qaiser Abbas, Nadia Tabassum i Shadman Sakib. "Botnet Attack Detection in IoT Using Machine Learning". Computational Intelligence and Neuroscience 2022 (4.10.2022): 1–14. http://dx.doi.org/10.1155/2022/4515642.
Pełny tekst źródłaAfrifa, Stephen, Vijayakumar Varadarajan, Peter Appiahene, Tao Zhang i Emmanuel Adjei Domfeh. "Ensemble Machine Learning Techniques for Accurate and Efficient Detection of Botnet Attacks in Connected Computers". Eng 4, nr 1 (16.02.2023): 650–64. http://dx.doi.org/10.3390/eng4010039.
Pełny tekst źródłaHussain, Zeeshan, Adnan Akhunzada, Javed Iqbal, Iram Bibi i Abdullah Gani. "Secure IIoT-Enabled Industry 4.0". Sustainability 13, nr 22 (10.11.2021): 12384. http://dx.doi.org/10.3390/su132212384.
Pełny tekst źródłaM. Ali Alheeti, Khattab, Ibrahim Alsukayti i Mohammed Alreshoodi. "Intelligent Botnet Detection Approach in Modern Applications". International Journal of Interactive Mobile Technologies (iJIM) 15, nr 16 (23.08.2021): 113. http://dx.doi.org/10.3991/ijim.v15i16.24199.
Pełny tekst źródłaAl-Sarem, Mohammed, Faisal Saeed, Eman H. Alkhammash i Norah Saleh Alghamdi. "An Aggregated Mutual Information Based Feature Selection with Machine Learning Methods for Enhancing IoT Botnet Attack Detection". Sensors 22, nr 1 (28.12.2021): 185. http://dx.doi.org/10.3390/s22010185.
Pełny tekst źródłaShao, Zhou, Sha Yuan i Yongli Wang. "Adaptive online learning for IoT botnet detection". Information Sciences 574 (październik 2021): 84–95. http://dx.doi.org/10.1016/j.ins.2021.05.076.
Pełny tekst źródłaJung, Woosub, Hongyang Zhao, Minglong Sun i Gang Zhou. "IoT botnet detection via power consumption modeling". Smart Health 15 (marzec 2020): 100103. http://dx.doi.org/10.1016/j.smhl.2019.100103.
Pełny tekst źródłaTatarnikova, T. M., I. A. Sikarev, P. Yu Bogdanov i T. V. Timochkina. "Botnet Attack Detection Approach in IoT Networks". Automatic Control and Computer Sciences 56, nr 8 (grudzień 2022): 838–46. http://dx.doi.org/10.3103/s0146411622080259.
Pełny tekst źródłaKim, Jiyeon, Minsun Shim, Seungah Hong, Yulim Shin i Eunjung Choi. "Intelligent Detection of IoT Botnets Using Machine Learning and Deep Learning". Applied Sciences 10, nr 19 (8.10.2020): 7009. http://dx.doi.org/10.3390/app10197009.
Pełny tekst źródłaApostol, Ioana, Marius Preda, Constantin Nila i Ion Bica. "IoT Botnet Anomaly Detection Using Unsupervised Deep Learning". Electronics 10, nr 16 (4.08.2021): 1876. http://dx.doi.org/10.3390/electronics10161876.
Pełny tekst źródłaLee, Seungjin, Azween Abdullah, Nz Jhanjhi i Sh Kok. "Classification of botnet attacks in IoT smart factory using honeypot combined with machine learning". PeerJ Computer Science 7 (25.01.2021): e350. http://dx.doi.org/10.7717/peerj-cs.350.
Pełny tekst źródłaMalik, Kainat, Faisal Rehman, Tahir Maqsood, Saad Mustafa, Osman Khalid i Adnan Akhunzada. "Lightweight Internet of Things Botnet Detection Using One-Class Classification". Sensors 22, nr 10 (10.05.2022): 3646. http://dx.doi.org/10.3390/s22103646.
Pełny tekst źródłaAlothman, Zainab, Mouhammd Alkasassbeh i Sherenaz Al-Haj Baddar. "An efficient approach to detect IoT botnet attacks using machine learning". Journal of High Speed Networks 26, nr 3 (27.11.2020): 241–54. http://dx.doi.org/10.3233/jhs-200641.
Pełny tekst źródłaSwathi, G. Chandana, G. Kishor Kumar i A. P. Siva Kumar. "Central Pivot Heuristics for Botnet Attack Defense in Iot". International Journal on Recent and Innovation Trends in Computing and Communication 10, nr 10 (31.10.2022): 78–90. http://dx.doi.org/10.17762/ijritcc.v10i10.5738.
Pełny tekst źródłaLee, Seungjin, Azween Abdullah, N. Z. Jhanjhi i S. H. Kok. "Honeypot Coupled Machine Learning Model for Botnet Detection and Classification in IoT Smart Factory – An Investigation". MATEC Web of Conferences 335 (2021): 04003. http://dx.doi.org/10.1051/matecconf/202133504003.
Pełny tekst źródłaAlzahrani, Rami J., i Ahmed Alzahrani. "A Novel Multi Algorithm Approach to Identify Network Anomalies in the IoT Using Fog Computing and a Model to Distinguish between IoT and Non-IoT Devices". Journal of Sensor and Actuator Networks 12, nr 2 (28.02.2023): 19. http://dx.doi.org/10.3390/jsan12020019.
Pełny tekst źródłaAl-Kasassbeh, Mouhammd, Mohammad Almseidin, Khaled Alrfou i Szilveszter Kovacs. "Detection of IoT-botnet attacks using fuzzy rule interpolation". Journal of Intelligent & Fuzzy Systems 39, nr 1 (17.07.2020): 421–31. http://dx.doi.org/10.3233/jifs-191432.
Pełny tekst źródłaNguyen, Giang L., Braulio Dumba, Quoc-Dung Ngo, Hai-Viet Le i Tu N. Nguyen. "A collaborative approach to early detection of IoT Botnet". Computers & Electrical Engineering 97 (styczeń 2022): 107525. http://dx.doi.org/10.1016/j.compeleceng.2021.107525.
Pełny tekst źródłaNguyen, Huy-Trung, Quoc-Dung Ngo i Van-Hoang Le. "A novel graph-based approach for IoT botnet detection". International Journal of Information Security 19, nr 5 (23.10.2019): 567–77. http://dx.doi.org/10.1007/s10207-019-00475-6.
Pełny tekst źródłaAbu Khurma, Ruba, Iman Almomani i Ibrahim Aljarah. "IoT Botnet Detection Using Salp Swarm and Ant Lion Hybrid Optimization Model". Symmetry 13, nr 8 (28.07.2021): 1377. http://dx.doi.org/10.3390/sym13081377.
Pełny tekst źródłade Caldas Filho, Francisco Lopes, Samuel Carlos Meneses Soares, Elder Oroski, Robson de Oliveira Albuquerque, Rafael Zerbini Alves da Mata, Fábio Lúcio Lopes de Mendonça i Rafael Timóteo de Sousa Júnior. "Botnet Detection and Mitigation Model for IoT Networks Using Federated Learning". Sensors 23, nr 14 (11.07.2023): 6305. http://dx.doi.org/10.3390/s23146305.
Pełny tekst źródłaCatillo, Marta, Antonio Pecchia i Umberto Villano. "A Deep Learning Method for Lightweight and Cross-Device IoT Botnet Detection". Applied Sciences 13, nr 2 (7.01.2023): 837. http://dx.doi.org/10.3390/app13020837.
Pełny tekst źródłaFaysal, Jabed Al, Sk Tahmid Mostafa, Jannatul Sultana Tamanna, Khondoker Mirazul Mumenin, Md Mashrur Arifin, Md Abdul Awal, Atanu Shome i Sheikh Shanawaz Mostafa. "XGB-RF: A Hybrid Machine Learning Approach for IoT Intrusion Detection". Telecom 3, nr 1 (4.01.2022): 52–69. http://dx.doi.org/10.3390/telecom3010003.
Pełny tekst źródłaMyridakis, Dimitrios, Stefanos Papafotikas, Konstantinos Kalovrektis i Athanasios Kakarountas. "Enhancing Security on IoT Devices via Machine Learning on Conditional Power Dissipation". Electronics 9, nr 11 (29.10.2020): 1799. http://dx.doi.org/10.3390/electronics9111799.
Pełny tekst źródłaAL-Akhras, Mousa, Abdulmajeed Alshunaybir, Hani Omar i Samah Alhazmi. "Botnet attacks detection in IoT environment using machine learning techniques". International Journal of Data and Network Science 7, nr 4 (2023): 1683–706. http://dx.doi.org/10.5267/j.ijdns.2023.7.021.
Pełny tekst źródłaKerrakchou, Imane, Adil Abou El Hassan, Sara Chadli, Mohamed Emharraf i Mohammed Saber. "Selection of efficient machine learning algorithm on Bot-IoT dataset for intrusion detection in internet of things networks". Indonesian Journal of Electrical Engineering and Computer Science 31, nr 3 (1.09.2023): 1784. http://dx.doi.org/10.11591/ijeecs.v31.i3.pp1784-1793.
Pełny tekst źródłaTrajanovski, Tolijan, i Ning Zhang. "An Automated and Comprehensive Framework for IoT Botnet Detection and Analysis (IoT-BDA)". IEEE Access 9 (2021): 124360–83. http://dx.doi.org/10.1109/access.2021.3110188.
Pełny tekst źródłaPopoola, Segun I., Bamidele Adebisi, Ruth Ande, Mohammad Hammoudeh, Kelvin Anoh i Aderemi A. Atayero. "SMOTE-DRNN: A Deep Learning Algorithm for Botnet Detection in the Internet-of-Things Networks". Sensors 21, nr 9 (24.04.2021): 2985. http://dx.doi.org/10.3390/s21092985.
Pełny tekst źródłaNegera, Worku Gachena, Friedhelm Schwenker, Taye Girma Debelee, Henock Mulugeta Melaku i Degaga Wolde Feyisa. "Lightweight Model for Botnet Attack Detection in Software Defined Network-Orchestrated IoT". Applied Sciences 13, nr 8 (7.04.2023): 4699. http://dx.doi.org/10.3390/app13084699.
Pełny tekst źródła