Gotowa bibliografia na temat „Ionization bubbles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ionization bubbles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Ionization bubbles"
Danehkar, A., M. S. Oey i W. J. Gray. "Numerical Modeling of Galactic Superwinds with Time-evolving Stellar Feedback". Proceedings of the International Astronomical Union 17, S370 (sierpień 2021): 217–22. http://dx.doi.org/10.1017/s1743921323000066.
Pełny tekst źródłaDwarkadas, Vikram V. "On the Evolution of, and Hot Gas in, Wind-Blown Bubbles around Massive Stars - Wind Bubbles Are Not Energy-Conserving". Galaxies 11, nr 3 (19.06.2023): 78. http://dx.doi.org/10.3390/galaxies11030078.
Pełny tekst źródłaSoria, R., M. W. Pakull, C. Motch, J. C. A. Miller-Jones, A. D. Schwope, R. T. Urquhart i M. S. Ryan. "The ultraluminous X-ray source bubble in NGC 5585". Monthly Notices of the Royal Astronomical Society 501, nr 2 (9.12.2020): 1644–62. http://dx.doi.org/10.1093/mnras/staa3784.
Pełny tekst źródłaXu, Yidong, Bin Yue i Xuelei Chen. "The Neutral Islands during the Late Epoch of Reionization". Proceedings of the International Astronomical Union 12, S333 (październik 2017): 64–67. http://dx.doi.org/10.1017/s174392131701153x.
Pełny tekst źródłaBolotnova, R. Kh. "Wide-range equations of state for organic liquids". Proceedings of the Mavlyutov Institute of Mechanics 5 (2007): 113–20. http://dx.doi.org/10.21662/uim2007.1.011.
Pełny tekst źródłaYasui, Kyuichi. "Multibubble Sonoluminescence from a Theoretical Perspective". Molecules 26, nr 15 (30.07.2021): 4624. http://dx.doi.org/10.3390/molecules26154624.
Pełny tekst źródłaMedling, Anne M., Lisa J. Kewley, Daniela Calzetti, George C. Privon, Kirsten Larson, Jeffrey A. Rich, Lee Armus i in. "Tracing the Ionization Structure of the Shocked Filaments of NGC 6240". Astrophysical Journal 923, nr 2 (1.12.2021): 160. http://dx.doi.org/10.3847/1538-4357/ac2ebb.
Pełny tekst źródłaDwarkadas, Vikram V. "Ionization-Gasdynamic Simulations of Wind-Blown Nebulae around Massive Stars". Galaxies 10, nr 1 (17.02.2022): 37. http://dx.doi.org/10.3390/galaxies10010037.
Pełny tekst źródłaGorce, Adélie, i Jonathan R. Pritchard. "Studying the morphology of reionization with the triangle correlation function of phases". Monthly Notices of the Royal Astronomical Society 489, nr 1 (9.08.2019): 1321–37. http://dx.doi.org/10.1093/mnras/stz2195.
Pełny tekst źródłaSönksen, Carsten P., Peter Roepstorff, Per-Olof Markgren, U. Helena Danielson, Markku D. Hämäläinen i Östen Jansson. "Capture and Analysis of Low Molecular Weight Ligands by Surface Plasmon Resonance Combined with Mass Spectrometry". European Journal of Mass Spectrometry 7, nr 4-5 (sierpień 2001): 385–91. http://dx.doi.org/10.1255/ejms.448.
Pełny tekst źródłaRozprawy doktorskie na temat "Ionization bubbles"
Khadka, Sovit M. "Multi-diagnostic Investigations of the Equatorial and Low-latitude Ionospheric Electrodynamics and Their Impacts on Space-based Technologies". Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108001.
Pełny tekst źródłaThesis advisor: Dr. Cesar E. Valladares
The equatorial and low-latitude ionosphere of the Earth exhibits unique features on its structuring, coupling, and electrodynamics that offer the possibility to forecast the dynamics and fluctuations of ionospheric plasma densities at later times. The scientific understanding and forecasting of ionospheric plasma are necessary for several practical applications, such as for mitigating the adverse effects of space weather on communication, navigation, power grids, space mission, and for various scientific experiments and applications. The daytime equatorial electrojet (EEJ), equatorial ionization anomaly (EIA), as well as nighttime equatorial plasma bubble (EPB) and plasma blobs are the most prominent low-latitude ionospheric phenomena. This dissertation focuses on the multi-diagnostic study of the mechanism, properties, abnormalities, and interrelationships of these phenomena to provide significant contributions to space weather communities from the ground- and space-based measurements. A strong longitudinal, seasonal, day-to-day variability and dependency between EEJ, ExB vertical plasma drift, and total electron content (TEC) in the EIA distribution are seen in the equatorial and low-latitude region. In general, the EEJ strength is stronger in the west coast of South America than in its east coast. The variability of the EEJ in the dayside ionosphere significantly affects the ionospheric electron density variation, dynamics of the peak height of F2-layer, and TEC distributions as the EEJ influences the vertical transport mechanism of the ionospheric plasma. The eastward electric field (EEF) and the neutral wind play a decisive role in controlling the actual configuration of the EIA. The trans-equatorial neutral wind profile calculated using data from the Second-generation, Optimized, Fabry-Perot Doppler Imager (SOFDI) located near the geomagnetic equator and a physics-based numerical model, LLIONS (Low-Latitude IONospheric Sector) give new perspectives on the effects of daytime meridional neutral winds on the consequent evolution of the asymmetry of the equatorial TEC anomalies during the afternoon onwards. The spatial configurations including the strength, shape, amplitude and latitudinal extension of the EIA crests are affected by the EEF associated with the EEJ under undisturbed conditions, whereas the meridional neutral winds play a significant role in the development of their asymmetric structure in the low-latitude ionosphere. Additionally, the SWARM satellite constellation and the ground-based LISN (Low-Latitude Ionospheric Sensor Network) data allow us to resolve the space-time ambiguity of past single-satellite studies and detect the drastic changes that EPBs and plasma blobs undergo on a short time scale. The coordinated quantitative analysis of a plasma density observation shows evidence of the association of plasma blobs with EPBs via an appropriate geomagnetic flux tube. Plasma blobs were initially associated with the EPBs and remained at the equatorial latitude right above the EPBs height, but later were pushed away from geomagnetic equator towards EIA latitudes by the EPB/ depleted flux tubes that grew in volume. Further, there exists a strong correlation between the noontime equatorial electrojet and the GPS-derived TEC distributions during the afternoon time period, caused by vertical E × B drift via the fountain effect. Nevertheless, only a minor correlation likely exists between the peak EEJ and the net postsunset ionospheric scintillation index (S4) greater than 0.2. This study not only searches for a mutual relationship between the midday, afternoon and nighttime ionospheric phenomena but also aims at providing a possible route to improve our space weather forecasting capability by predicting nighttime ionospheric irregularities based on midday measurements at the equatorial and low latitudes
Thesis (PhD) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Raste, Janakee. "Analytical Formalism to Study the 21 cm Signal from Cosmic Dawn and Epoch of Reionization". Thesis, 2019. https://etd.iisc.ac.in/handle/2005/4746.
Pełny tekst źródła"Effects of ionization in a single sonoluminescing bubble". 2000. http://library.cuhk.edu.hk/record=b5890351.
Pełny tekst źródłaThesis (M.Phil.)--Chinese University of Hong Kong, 2000.
Includes bibliographical references (leaves [90]-93).
Text in English; abstracts in English and Chinese.
Ho Chun Yan = Dian li dui dan pao sheng zhi fa guang de ying xiang / He Junen.
Abstract --- p.i
Acknowledgements --- p.ii
Contents --- p.iii
List of Figures --- p.vii
List of Tables --- p.xii
Chapter Chapter 1. --- Introduction --- p.1
Chapter Chapter 2. --- Hydro dynamical Framework --- p.7
Chapter 2.1 --- Bubble wall motion --- p.8
Chapter 2.2 --- Navier-Stokes equations --- p.10
Chapter 2.3 --- Energy equation in water --- p.11
Chapter 2.4 --- Boundary condition --- p.12
Chapter 2.5 --- Equation of state of the gas in the bubble --- p.13
Chapter 2.5.1 --- Hard-core van der Waals EOS --- p.13
Chapter 2.5.2 --- Young's EOS --- p.14
Chapter 2.6 --- Numerical method --- p.14
Chapter 2.7 --- Numerical results and discussion --- p.15
Chapter 2.8 --- Chapter summary --- p.19
Chapter Chapter 3. --- Equilibrium Approach --- p.20
Chapter 3.1 --- Saha equation --- p.21
Chapter 3.2 --- Equation of state (EOS) --- p.22
Chapter 3.3 --- Numerical method --- p.23
Chapter 3.4 --- Numerical results --- p.23
Chapter 3.5 --- Chapter summary --- p.28
Chapter Chapter 4. --- Reaction Rates Approach --- p.29
Chapter 4.1 --- Conservation equations --- p.30
Chapter 4.2 --- Ionization and recombination processes --- p.32
Chapter 4.2.1 --- Collisional ionization --- p.32
Chapter 4.2.2 --- Radiative recombination --- p.33
Chapter 4.2.3 --- Three-body recombination --- p.34
Chapter 4.2.4 --- Consistency with Saha equation --- p.34
Chapter 4.3 --- Equation of state --- p.35
Chapter 4.3.1 --- Modified Van der Waals EOS --- p.35
Chapter 4.3.2 --- Modified Young's EOS --- p.36
Chapter 4.4 --- Numerical method --- p.37
Chapter 4.5 --- Numerical results --- p.38
Chapter 4.5.1 --- Effect of ionization on hydrodynamic variables --- p.38
Chapter 4.5.2 --- Time variation of temperature --- p.40
Chapter 4.5.3 --- Near the upper threshold of SBSL --- p.41
Chapter 4.5.4 --- Onset of SBSL --- p.44
Chapter 4.5.5 --- Effect of EOS --- p.46
Chapter 4.5.6 --- Effect of physical parameters --- p.51
Chapter 4.6 --- Chapter summary --- p.56
Chapter Chapter 5. --- Emitted Radiation --- p.57
Chapter 5.1 --- Bremsstrahlung emission --- p.59
Chapter 5.1.1 --- Numerical results --- p.60
Chapter 5.2 --- Simple blackbody radiation model --- p.63
Chapter 5.2.1 --- Planck's law --- p.63
Chapter 5.2.2 --- Calculated pulse width and spectrum --- p.64
Chapter 5.3 --- Blackbody radiation with finite opacity --- p.68
Chapter 5.3.1 --- Photon absorption --- p.68
Chapter 5.3.2 --- Importance of photon absorption --- p.70
Chapter 5.3.3 --- The refined model --- p.72
Chapter 5.3.4 --- Pulse width and spectrum in the refined model --- p.73
Chapter 5.4 --- Chapter summary --- p.80
Chapter Chapter 6. --- Summary --- p.81
Appendix A. Hydrodynamics of an SL Bubble --- p.83
Chapter A.1 --- The normal viscous stress and heat conductivity --- p.83
Chapter A.2 --- Transformation of Navier-Stoke equations --- p.83
Chapter A.3 --- Transformation of the energy equation of liquid --- p.84
Appendix B. Numerical Scheme for the gas dynamics with ionization --- p.85
Chapter B.1 --- Finite difference equation --- p.85
Chapter B.2 --- The TVD scheme --- p.86
Bibliography --- p.90
Książki na temat "Ionization bubbles"
Gravity wave seeding of equatorial plasma bubbles. [Washington, DC: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "Ionization bubbles"
Jenkins, Edward B. "Pressure and Ionization Balances in the Circum-Heliospheric Interstellar Medium and the Local Bubble". W From the Outer Heliosphere to the Local Bubble, 205–16. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-1-4419-0247-4_16.
Pełny tekst źródłaStreszczenia konferencji na temat "Ionization bubbles"
Menchiari, Stefano, Giovanni Morlino, Elena Amato i Niccolò Bucciantini. "Cosmic ray induced ionization of molecular clouds embedded in the wind blown bubbles of massive star clusters". W 38th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.444.0059.
Pełny tekst źródłaTabei, Katsuine, Shunji Mashiko i Hiroyuki Shirai. "Study of Cavitation Light Emission Generated by a Waterhammer". W ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45274.
Pełny tekst źródłaShkolnikov, P. L., i A. E. Kaplan. "Backward and multi-echo field ionization by intense non-envelope "superpulses"". W Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.the29.
Pełny tekst źródłaVogel, Alfred, i Joachim Noack. "Numerical Simulation of Optical Breakdown for Cellular Surgery at Nanosecond to Femtosecond Time Scales". W European Conference on Biomedical Optics. Washington, D.C.: Optica Publishing Group, 2001. http://dx.doi.org/10.1364/ecbo.2001.4433_70.
Pełny tekst źródła