Artykuły w czasopismach na temat „Ionic microgels”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Ionic microgels”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Truzzolillo, Domenico, Simona Sennato, Stefano Sarti, Stefano Casciardi, Chiara Bazzoni i Federico Bordi. "Overcharging and reentrant condensation of thermoresponsive ionic microgels". Soft Matter 14, nr 20 (2018): 4110–25. http://dx.doi.org/10.1039/c7sm02357j.
Pełny tekst źródłaKusaia, Viktoria S., Elena Yu Kozhunova, Darya A. Stepanova, Vladislava A. Pigareva, Andrey V. Sybachin, Sergey B. Zezin, Anastasiya V. Bolshakova i in. "Synthesis of Magneto-Controllable Polymer Nanocarrier Based on Poly(N-isopropylacrylamide-co-acrylic Acid) for Doxorubicin Immobilization". Polymers 14, nr 24 (12.12.2022): 5440. http://dx.doi.org/10.3390/polym14245440.
Pełny tekst źródłaSennato, Simona, Edouard Chauveau, Stefano Casciardi, Federico Bordi i Domenico Truzzolillo. "The Double-Faced Electrostatic Behavior of PNIPAm Microgels". Polymers 13, nr 7 (4.04.2021): 1153. http://dx.doi.org/10.3390/polym13071153.
Pełny tekst źródłaHwang, Byung Soo, Jong Sik Kim, Ju Min Kim i Tae Soup Shim. "Thermogelling Behaviors of Aqueous Poly(N-Isopropylacrylamide-co-2-Hydroxyethyl Methacrylate) Microgel–Silica Nanoparticle Composite Dispersions". Materials 14, nr 5 (4.03.2021): 1212. http://dx.doi.org/10.3390/ma14051212.
Pełny tekst źródłaSigolaeva, Larisa, Dmitry Pergushov, Marina Oelmann, Simona Schwarz, Monia Brugnoni, Ilya Kurochkin, Felix Plamper, Andreas Fery i Walter Richtering. "Surface Functionalization by Stimuli-Sensitive Microgels for Effective Enzyme Uptake and Rational Design of Biosensor Setups". Polymers 10, nr 7 (19.07.2018): 791. http://dx.doi.org/10.3390/polym10070791.
Pełny tekst źródłaMurphy, Ryan, Lijie Zhu, Ganesan Narsimhan i Owen Jones. "Impacts of Size and Deformability of β-Lactoglobulin Microgels on the Colloidal Stability and Volatile Flavor Release of Microgel-Stabilized Emulsions". Gels 4, nr 3 (15.09.2018): 79. http://dx.doi.org/10.3390/gels4030079.
Pełny tekst źródłaCui, Jiecheng, Ning Gao, Jian Li, Chen Wang, Hui Wang, Meimei Zhou, Meng Zhang i Guangtao Li. "Poly(ionic liquid)-based monodisperse microgels as a unique platform for producing functional materials". Journal of Materials Chemistry C 3, nr 3 (2015): 623–31. http://dx.doi.org/10.1039/c4tc02487g.
Pełny tekst źródłaMoncho-Jordá, Arturo, i Joachim Dzubiella. "Swelling of ionic microgel particles in the presence of excluded-volume interactions: a density functional approach". Physical Chemistry Chemical Physics 18, nr 7 (2016): 5372–85. http://dx.doi.org/10.1039/c5cp07794j.
Pełny tekst źródłaAl-Tikriti, Yassir, i Per Hansson. "Drug-Induced Phase Separation in Polyelectrolyte Microgels". Gels 8, nr 1 (22.12.2021): 4. http://dx.doi.org/10.3390/gels8010004.
Pełny tekst źródłaSilva, Karen Cristina Guedes, Ana Isabel Bourbon, Lorenzo Pastrana i Ana Carla Kawazoe Sato. "Emulsion-filled hydrogels for food applications: influence of pH on emulsion stability and a coating on microgel protection". Food & Function 11, nr 9 (2020): 8331–41. http://dx.doi.org/10.1039/d0fo01198c.
Pełny tekst źródłaCai, Shixuan, Hongyan Shi, Guoqian Li, Qilu Xue, Lei Zhao, Fu Wang i Bo Hu. "3D-Printed Concentration-Controlled Microfluidic Chip with Diffusion Mixing Pattern for the Synthesis of Alginate Drug Delivery Microgels". Nanomaterials 9, nr 10 (12.10.2019): 1451. http://dx.doi.org/10.3390/nano9101451.
Pełny tekst źródłaRoa, Rafael, Emiliy K. Zholkovskiy i Gerhard Nägele. "Ultrafiltration modeling of non-ionic microgels". Soft Matter 11, nr 20 (2015): 4106–22. http://dx.doi.org/10.1039/c5sm00678c.
Pełny tekst źródłaHanel, Clemens, Christos Likos i Ronald Blaak. "Effective Interactions between Multilayered Ionic Microgels". Materials 7, nr 12 (2.12.2014): 7689–705. http://dx.doi.org/10.3390/ma7127689.
Pełny tekst źródłaDenton, Alan R., i Qiyun Tang. "Counterion-induced swelling of ionic microgels". Journal of Chemical Physics 145, nr 16 (28.10.2016): 164901. http://dx.doi.org/10.1063/1.4964864.
Pełny tekst źródłaWang, Jianying, Kai Song, Lei Wang, Yijing Liu, Ben Liu, Jintao Zhu, Xiaolin Xie i Zhihong Nie. "Formation of hybrid core–shell microgels induced by autonomous unidirectional migration of nanoparticles". Materials Horizons 3, nr 1 (2016): 78–82. http://dx.doi.org/10.1039/c5mh00024f.
Pełny tekst źródłaRovigatti, Lorenzo, Nicoletta Gnan, Letizia Tavagnacco, Angel J. Moreno i Emanuela Zaccarelli. "Numerical modelling of non-ionic microgels: an overview". Soft Matter 15, nr 6 (2019): 1108–19. http://dx.doi.org/10.1039/c8sm02089b.
Pełny tekst źródłaBergman, Maxime J., Sofi Nöjd, Priti S. Mohanty, Niels Boon, Jasper N. Immink, J. J. Erik Maris, Joakim Stenhammar i Peter Schurtenberger. "On the role of softness in ionic microgel interactions". Soft Matter 17, nr 44 (2021): 10063–72. http://dx.doi.org/10.1039/d1sm01222c.
Pełny tekst źródłaYan, Suting, Jianda Xie, Qingshi Wu, Shiming Zhou, Anqi Qu i Weitai Wu. "Highly efficient solid polymer electrolytes using ion containing polymer microgels". Polymer Chemistry 6, nr 7 (2015): 1052–55. http://dx.doi.org/10.1039/c4py01603c.
Pełny tekst źródłaBergman, Maxime J., Jan S. Pedersen, Peter Schurtenberger i Niels Boon. "Controlling the morphology of microgels by ionic stimuli". Soft Matter 16, nr 11 (2020): 2786–94. http://dx.doi.org/10.1039/c9sm02170a.
Pełny tekst źródłaChen, Shoumin, Aiping Chang, Xuezhen Lin, Zhenghao Zhai, Fan Lu, Shiming Zhou, Haoxin Guo i Weitai Wu. "Synthesis and characterization of ureido-derivatized UCST-type poly(ionic liquid) microgels". Polymer Chemistry 9, nr 12 (2018): 1439–47. http://dx.doi.org/10.1039/c8py00077h.
Pełny tekst źródłaSahiner, Mehtap, Selin S. Suner, Aynur S. Yilmaz i Nurettin Sahiner. "Polyelectrolyte Chondroitin Sulfate Microgels as a Carrier Material for Rosmarinic Acid and Their Antioxidant Ability". Polymers 14, nr 20 (14.10.2022): 4324. http://dx.doi.org/10.3390/polym14204324.
Pełny tekst źródłaDel Monte, Giovanni, Andrea Ninarello, Fabrizio Camerin, Lorenzo Rovigatti, Nicoletta Gnan i Emanuela Zaccarelli. "Numerical insights on ionic microgels: structure and swelling behaviour". Soft Matter 15, nr 40 (2019): 8113–28. http://dx.doi.org/10.1039/c9sm01253b.
Pełny tekst źródłaZhou, Xianjing, Qing Yang, Jianyuan Li, Jingjing Nie, Guping Tang i Binyang Du. "Thermo-sensitive poly(VCL-4VP-NVP) ionic microgels: synthesis, cytotoxicity, hemocompatibility, and sustained release of anti-inflammatory drugs". Materials Chemistry Frontiers 1, nr 2 (2017): 369–79. http://dx.doi.org/10.1039/c6qm00046k.
Pełny tekst źródłaChen, Minjun, Guido Bolognesi i Goran T. Vladisavljević. "Crosslinking Strategies for the Microfluidic Production of Microgels". Molecules 26, nr 12 (20.06.2021): 3752. http://dx.doi.org/10.3390/molecules26123752.
Pełny tekst źródłaAgnihotri, Priyanshi, Sangeeta, Shikha Aery i Abhijit Dan. "Temperature- and pH-responsive poly(N-isopropylacrylamide-co-methacrylic acid) microgels as a carrier for controlled protein adsorption and release". Soft Matter 17, nr 42 (2021): 9595–606. http://dx.doi.org/10.1039/d1sm01197a.
Pełny tekst źródłaMonteillet, Hélène, Marcel Workamp, Xiaohua Li, Boelo Schuur, J. Mieke Kleijn, Frans A. M. Leermakers i Joris Sprakel. "Multi-responsive ionic liquid emulsions stabilized by microgels". Chem. Commun. 50, nr 81 (2014): 12197–200. http://dx.doi.org/10.1039/c4cc04990j.
Pełny tekst źródłaChen, Shoumin, Xuezhen Lin, Zhenghao Zhai, Ruyue Lan, Jin Li, Yusong Wang, Shiming Zhou, Zahoor Hussain Farooqi i Weitai Wu. "Synthesis and characterization of CO2-sensitive temperature-responsive catalytic poly(ionic liquid) microgels". Polymer Chemistry 9, nr 21 (2018): 2887–96. http://dx.doi.org/10.1039/c8py00352a.
Pełny tekst źródłaZhou, Yuanyuan, Hui Tang i Peiyi Wu. "Volume phase transition mechanism of poly[oligo(ethylene glycol)methacrylate] based thermo-responsive microgels with poly(ionic liquid) cross-linkers". Physical Chemistry Chemical Physics 17, nr 38 (2015): 25525–35. http://dx.doi.org/10.1039/c5cp03676c.
Pełny tekst źródłaYang, Jianping, Bei Huang, Zhengxiang Lv i Zheng Cao. "Preparation and self-assembly of ionic (PNIPAM-co-VIM) microgels and their adsorption property for phosphate ions". RSC Advances 13, nr 6 (2023): 3425–37. http://dx.doi.org/10.1039/d2ra06678e.
Pełny tekst źródłaNigro, Valentina, Roberta Angelini, Monica Bertoldo, Elena Buratti, Silvia Franco i Barbara Ruzicka. "Chemical-Physical Behaviour of Microgels Made of Interpenetrating Polymer Networks of PNIPAM and Poly(acrylic Acid)". Polymers 13, nr 9 (21.04.2021): 1353. http://dx.doi.org/10.3390/polym13091353.
Pełny tekst źródłaEichenbaum, Gary M., Patrick F. Kiser, Dipak Shah, William P. Meuer, David Needham i Sidney A. Simon. "Alkali Earth Metal Binding Properties of Ionic Microgels". Macromolecules 33, nr 11 (maj 2000): 4087–93. http://dx.doi.org/10.1021/ma9917139.
Pełny tekst źródłaRiest, Jonas, Priti Mohanty, Peter Schurtenberger i Christos N. Likos. "Coarse-Graining of Ionic Microgels: Theory and Experiment". Zeitschrift für Physikalische Chemie 226, nr 7-8 (sierpień 2012): 711–35. http://dx.doi.org/10.1524/zpch.2012.0258.
Pełny tekst źródłaNöjd, Sofi, Priti S. Mohanty, Payam Bagheri, Anand Yethiraj i Peter Schurtenberger. "Electric field driven self-assembly of ionic microgels". Soft Matter 9, nr 38 (2013): 9199. http://dx.doi.org/10.1039/c3sm51226f.
Pełny tekst źródłaGarcía-Briega, María Inmaculada, Joaquín Ródenas-Rochina, Luis Amaro Martins, Senentxu Lanceros-Méndez, Gloria Gallego Ferrer, Amparo Sempere i José Luís Gómez Ribelles. "Stability of Biomimetically Functionalised Alginate Microspheres as 3D Support in Cell Cultures". Polymers 14, nr 20 (12.10.2022): 4282. http://dx.doi.org/10.3390/polym14204282.
Pełny tekst źródłaSuzuki, Shiho, Junichiro Nishioka i Shinichi Kitamura. "Characterization of Amylose Nanogels and Microgels Containing Ionic Polysaccharides". Journal of Applied Glycoscience 64, nr 2 (2017): 21–25. http://dx.doi.org/10.5458/jag.jag.jag-2016_012.
Pełny tekst źródłaFleury, E., J. Dubois, C. L�onard, J. P. Joseleau i H. Chanzy. "Microgels and ionic associations in solutions of cellulose diacetate". Cellulose 1, nr 2 (czerwiec 1994): 131–44. http://dx.doi.org/10.1007/bf00819663.
Pełny tekst źródłaMarcilla, Rebeca, Marta Sanchez-Paniagua, Beatriz Lopez-Ruiz, Enrique Lopez-Cabarcos, Estibalitz Ochoteco, Hans Grande i David Mecerreyes. "Synthesis and characterization of new polymeric ionic liquid microgels". Journal of Polymer Science Part A: Polymer Chemistry 44, nr 13 (2006): 3958–65. http://dx.doi.org/10.1002/pola.21483.
Pełny tekst źródłaFussell, S. L., K. Bayliss, C. Coops, L. Matthews, W. Li, W. H. Briscoe, M. A. Faers, C. P. Royall i J. S. van Duijneveldt. "Reversible temperature-controlled gelation in mixtures of pNIPAM microgels and non-ionic polymer surfactant". Soft Matter 15, nr 42 (2019): 8578–88. http://dx.doi.org/10.1039/c9sm01299k.
Pełny tekst źródłaWeyer, Tyler J., i Alan R. Denton. "Concentration-dependent swelling and structure of ionic microgels: simulation and theory of a coarse-grained model". Soft Matter 14, nr 22 (2018): 4530–40. http://dx.doi.org/10.1039/c8sm00799c.
Pełny tekst źródłaWang, Yitong, Ling Wang, Jingcheng Hao i Shuli Dong. "Plasmonic core–shell ionic microgels for photo-tuning catalytic applications". New Journal of Chemistry 42, nr 3 (2018): 2149–57. http://dx.doi.org/10.1039/c7nj03661b.
Pełny tekst źródłaChen, Rui, Xin Jin i Xinyuan Zhu. "Investigation of the Formation Process of PNIPAM-Based Ionic Microgels". ACS Omega 2, nr 12 (8.12.2017): 8788–93. http://dx.doi.org/10.1021/acsomega.7b01624.
Pełny tekst źródłaSchroeder, Ricarda, Walter Richtering, Igor I. Potemkin i Andrij Pich. "Stimuli-Responsive Zwitterionic Microgels with Covalent and Ionic Cross-Links". Macromolecules 51, nr 17 (22.08.2018): 6707–16. http://dx.doi.org/10.1021/acs.macromol.8b00689.
Pełny tekst źródłaSahiner, Nurettin, i Selin Sagbas. "Sucrose based ionic liquid colloidal microgels in separation of biomacromolecules". Separation and Purification Technology 196 (maj 2018): 191–99. http://dx.doi.org/10.1016/j.seppur.2017.07.001.
Pełny tekst źródłaAhualli, Silvia, Alberto Martín-Molina i Manuel Quesada-Pérez. "Excluded volume effects on ionic partitioning in gels and microgels: a simulation study". Phys. Chem. Chem. Phys. 16, nr 46 (2014): 25483–91. http://dx.doi.org/10.1039/c4cp03314k.
Pełny tekst źródłaDel Monte, Giovanni, Fabrizio Camerin, Andrea Ninarello, Nicoletta Gnan, Lorenzo Rovigatti i Emanuela Zaccarelli. "Charge affinity and solvent effects in numerical simulations of ionic microgels". Journal of Physics: Condensed Matter 33, nr 8 (15.12.2020): 084001. http://dx.doi.org/10.1088/1361-648x/abc4cb.
Pełny tekst źródłaMa, Lan, i Peiyi Wu. "The role of unique spatial structure in the volume phase transition behavior of poly(N-isopropylacrylamide)-based interpenetrating polymer network microgels including a thermosensitive poly(ionic liquid)". Physical Chemistry Chemical Physics 20, nr 12 (2018): 8077–87. http://dx.doi.org/10.1039/c8cp00340h.
Pełny tekst źródłaSahiner, Nurettin, Selin Sagbas i Nahit Aktas. "Very fast catalytic reduction of 4-nitrophenol, methylene blue and eosin Y in natural waters using green chemistry: p(tannic acid)–Cu ionic liquid composites". RSC Advances 5, nr 24 (2015): 18183–95. http://dx.doi.org/10.1039/c5ra00126a.
Pełny tekst źródłaZhang, Yanmei, Xian-Yang Quek, Leilei Wu, Yejun Guan i Emiel J. Hensen. "Palladium nanoparticles entrapped in polymeric ionic liquid microgels as recyclable hydrogenation catalysts". Journal of Molecular Catalysis A: Chemical 379 (listopad 2013): 53–58. http://dx.doi.org/10.1016/j.molcata.2013.07.010.
Pełny tekst źródłaÇalılı, Fatma, Papatya Kaner, Grace Aro, Ayse Asatekin i P. Zeynep Çulfaz-Emecen. "Ionic strength-responsive poly(sulfobetaine methacrylate) microgels for fouling removal during ultrafiltration". Reactive and Functional Polymers 156 (listopad 2020): 104738. http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104738.
Pełny tekst źródłaHorigome, Koji, Takeshi Ueki i Daisuke Suzuki. "Direct visualization of swollen microgels by scanning electron microscopy using ionic liquids". Polymer Journal 48, nr 3 (28.10.2015): 273–79. http://dx.doi.org/10.1038/pj.2015.103.
Pełny tekst źródła