Gotowa bibliografia na temat „Ion multivalent”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ion multivalent”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Ion multivalent"
Iton, Zachery W. B., i Kimberly A. See. "Multivalent Ion Conduction in Inorganic Solids". Chemistry of Materials 34, nr 3 (27.01.2022): 881–98. http://dx.doi.org/10.1021/acs.chemmater.1c04178.
Pełny tekst źródłaProffit, Danielle L., Albert L. Lipson, Baofei Pan, Sang-Don Han, Timothy T. Fister, Zhenxing Feng, Brian J. Ingram, Anthony K. Burrell i John T. Vaughey. "Reducing Side Reactions Using PF6-based Electrolytes in Multivalent Hybrid Cells". MRS Proceedings 1773 (2015): 27–32. http://dx.doi.org/10.1557/opl.2015.590.
Pełny tekst źródłaRutt, Ann, i Kristin A. Persson. "Expanding the Materials Search Space for Multivalent Cathodes". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 446. http://dx.doi.org/10.1149/ma2022-024446mtgabs.
Pełny tekst źródłaDong, Liubing, Wang Yang, Wu Yang, Yang Li, Wenjian Wu i Guoxiu Wang. "Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors". Journal of Materials Chemistry A 7, nr 23 (2019): 13810–32. http://dx.doi.org/10.1039/c9ta02678a.
Pełny tekst źródłaSchauser, Nicole S., Ram Seshadri i Rachel A. Segalman. "Multivalent ion conduction in solid polymer systems". Molecular Systems Design & Engineering 4, nr 2 (2019): 263–79. http://dx.doi.org/10.1039/c8me00096d.
Pełny tekst źródłaHasnat, Abul, i Vinay A. Juvekar. "Dynamics of ion-exchange involving multivalent cations". Chemical Engineering Science 52, nr 14 (lipiec 1997): 2439–42. http://dx.doi.org/10.1016/s0009-2509(97)00047-x.
Pełny tekst źródłaKC, Bilash, Jinglong Guo, Robert Klie, D. Bruce Buchholz, Guennadi Evmenenko, Jae Jin Kim, Timothy Fister i Brian Ingram. "TEM Analysis of Multivalent Ion Battery Cathode". Microscopy and Microanalysis 26, S2 (30.07.2020): 3170–72. http://dx.doi.org/10.1017/s1431927620024058.
Pełny tekst źródłaImanaka, Nobuhito, i Shinji Tamura. "Development of Multivalent Ion Conducting Solid Electrolytes". Bulletin of the Chemical Society of Japan 84, nr 4 (15.04.2011): 353–62. http://dx.doi.org/10.1246/bcsj.20100178.
Pełny tekst źródłaLi, Zhong-Qiu, Yang Wang, Zeng-Qiang Wu, Ming-Yang Wu i Xing-Hua Xia. "Bioinspired Multivalent Ion Responsive Nanopore with Ultrahigh Ion Current Rectification". Journal of Physical Chemistry C 123, nr 22 (13.05.2019): 13687–92. http://dx.doi.org/10.1021/acs.jpcc.9b02279.
Pełny tekst źródłaGates, Leslie, i Niya Sa. "Investigation of Suitability of Electrolytes in a Trivalent System". ECS Meeting Abstracts MA2023-01, nr 1 (28.08.2023): 425. http://dx.doi.org/10.1149/ma2023-011425mtgabs.
Pełny tekst źródłaRozprawy doktorskie na temat "Ion multivalent"
Keyzer, Evan. "Development of electrolyte salts for multivalent ion batteries". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288431.
Pełny tekst źródłaLi, Na. "Aluminum intercalation behaviours of Molecular Materials". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS222.pdf.
Pełny tekst źródłaThe first chapter introduces the concept and fundamental characteristics of molecular materials. It highlights their broad applications and the advantages they offer in electrochemical devices, along with an overview of their development in this field. Then, molecular materials are classified in three distinct ways based on different criteria. Each classification's subcategories are systematically explained, highlighting different aspects of molecular materials according to the classification method.Starting from multivalent ion batteries, the second chapter introduces the emerging aluminum ion battery as a storage system with great potential. The advantages of developing aluminum ion batteries are shown from the objective advantages of the natural abundance and price of aluminum itself, and the theoretical electrochemical potential of aluminum. Then, from the two aspects of electrolyte and electrode materials, aluminum ion batteries and their development status are summarized through detailed classification and examples.Therefore, based on our understanding of molecular materials and aluminum ion batteries, we conducted the following two projects:In a seminal work, we reported the lithium-ion storage capabilities of the iron-nickel bimetallic one-dimensional (1D) coordination polymer, {[FeIII(Tp)(CN)3]2[NiII(H2O)2]}n. The result first confirmed the reversible Li+ (de)intercalation in the 1D cyanide-bridged molecular material. This successful attempt in lithium-ion batteries aroused our interest in further exploring the possible insertion of aluminium ions into such one-dimensional cyano-bridge. In this work, we selected ([EMIm]Cl-AlCl3 ionic liquid with the ratio of 1.1:1(AlCl3 : ([EMIm]Cl) as electrolyte, and developed a series of one-dimensional (1D) material with the formula{[FeIII(Tp)(CN)3]2[MII(H2O)2]}n (M=Ni, Co, Mn, Zn, Cu). We expected the lower dimensionality and open framework of these compounds could permit easier ion (de)intercalation and a better Al-ion host capability. We can also hypothesize that the presence of organic shell (Tp ligands) in the chains could favor weaker electrostatic interactions between the inserted multivalent cation and the framework, and thus a better diffusion. Furthermore, comparisons between compounds bridged different divalent metals, including inactive zinc, are intended to help understand the multifaceted effects of bridged metals on compounds.Then, we conducted the second topic based on chloranilic acid. It is a series of 2D frameworks, as we would like to take advantage of the high stability of 2D structure and rely on the potential carbonyl groups to realize the intercalation and deintercation. As a result, the preliminary tests prove the stability of this series of frameworks. Since this is an ongoing project and we have only reported the data so far, further investigation of this series is needed
Wu-Tiu-Yen, Jenny. "Valorisation de la vinasse de canne à sucre : étude d'un procédé d'extraction d'un acide organique multivalent". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLA008.
Pełny tekst źródłaCane stillage or vinasse, a byproduct of cane industry, contains from 5 to 7 g/L of aconitic acid, a valuable trivalent carboxylic acid belonging to the second class of building block chemicals. Vinasse also contains a variety of organic compounds (organic acids, amino-acids, colouring matters) and minerals (chlorides, sulphates), which makes purification not straightforward. The objective of this work is to develop the extraction of aconitic acid from stillage, with anion exchange as the heart of the process. In order to improve performances, the main characteristics of the selected anion-exchange resin (Lewatit S4528) are studied. Acid-base dosage and ion-exchange equilibrium experiments allow the total capacity of this support and the ion-exchange coefficients for the major competing anions (aconitate, chloride and sulfate) to be obtained. Separation performances in column are studied for different pH, different solutions (aconitic acid alone, synthetic and industrial stillage) and different resin forms (sulfate, chloride and free- base) in order to elucidate the separation mechanisms.Elution step is also investigated. Best conditions are for stillage at its natural pH (pH 4.5) on the resin under chloride form and HCl 0,5N as the eluant. A 28% DM purity and a 61% global recovery are achieved for aconitic acid in the eluate. Main impurities still remaining are chlorides or sulfates and coloring matter. Homopolar electrodialysis proves successful for removing nearly 100% chlorides from aconitic acid with a limited loss of the acid (< 15%). Adsorption step on a polystyrenic resin (XAD16) of an acidic eluate leads to the retention of 80% of the colorants, with only 12% of the acid lost. At last, the most interesting process combination associates microfiltration, anion-exchange, electrodialysis and adsorption. Purity is 37% MS, namely 3.6 higher than the original vinasse. This work enables aconitic acid purity to be improved by a factor of 2.6 compared with prior studies and to have a better comprehension of the mechanisms involved in its purification on weak anionic resin
Padigi, Sudhaprasanna Kumar. "Multivalent Rechargeable Batteries". PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2464.
Pełny tekst źródłaMehta, Mary Anne. "Multivalent ions in polymer electrolytes". Thesis, University of St Andrews, 1993. http://hdl.handle.net/10023/15517.
Pełny tekst źródłaMatsarskaia, Olga [Verfasser]. "Multivalent ions for tuning the phase behaviour of protein solutions / Olga Matsarskaia". Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1223451739/34.
Pełny tekst źródłaLouisfrema, Wilfired. "Caractérisation des oxydes nanoporeux contenant des ions lourds en milieu aqueux". Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEE055/document.
Pełny tekst źródłaPorous crystalline aluminosilicates such as cationic zeolites, are widely studied because of their adsorption, ion exchange and catalytic properties, which explain their use in many industrial applications. Examples of the latter, which involve in particular multivalent cations, include detergents/softeners, catalytic cracking, or decontamination. Such industrial applications of zeolites all exploit their adsorption properties, which vary as a function of the pore size, comparable to the adsorbing molecules, or chemical composition, which results in charges within the framework, and in turn strong binding or repulsive sites. Importantly, in such applications zeolites are hydrated. Water is involved in the microscopic processes and thus influences all properties of the material. Molecular modeling is a weapon of choice to predict and understand the microscopic properties of the hydrated material, which are difficult to access experimentally. More precisely, the present modeling work deals with the behavior of multivalent cations in hydrated zeolites, in collaboration with experimentalists. Our study on zeolite Y faujasite first allowed us to clarify the migration of sodium cations upon dehydration and to predict the cation localisation in the hydrated material in the presence of divalent cations. Furthermore, we rationalized the coupled migration of cations and deformation of the framework upon water adsorption. To this end, we have developed a new method for the analysis of cation localization. The good performance of a polarizable force field demonstrated here paves the way for the study of the dynamics of the whole system, following in particular the simultaneous migration of cations and deformation of the framework. Such an approach could be later extended to other multivalent ions of industrial interest (rare Earths, f-block elements, ...)
Ritt, Marie-Claude. "Thermodynamics of interaction of macrocyclic ligands with multivalent ions and organic molecules of biological importance". Thesis, University of Surrey, 1991. http://epubs.surrey.ac.uk/843105/.
Pełny tekst źródłaGrawe, Thomas. "Multivalente Rezeptoren auf Phosphonatbasis molekulare Erkennung und Selbstorganisation in Wasser /". [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963938290.
Pełny tekst źródłaWolf, Marcell Verfasser], i Frank [Akademischer Betreuer] [Schreiber. "Effective interactions in liquid-liquid phase separated protein solutions induced by multivalent ions / Marcell Wolf ; Betreuer: Frank Schreiber". Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1197057757/34.
Pełny tekst źródłaKsiążki na temat "Ion multivalent"
Conference, Society for Emblem Studies International. Polyvalenz und Multifunktionalität der Emblematik =: Multivalence and multifunctionality of the emblem : proceedings of the 5th International Conference of the Society for Emblem Studies. Frankfurt am Main: Oxford, 2002.
Znajdź pełny tekst źródłaSociety for Emblem Studies. International Conference. Polyvalenz und Multifunktionalität der Emblematik =: Multivalence and multifunctionality of the emblem : proceedings of the 5th International Conference of the Society for Emblem Studies. Frankfurt am Main: Oxford, 2002.
Znajdź pełny tekst źródłaNorris, Robin, Rebecca Stephenson i Renée R. Trilling. Feminist Approaches to Early Medieval English Studies. Nieuwe Prinsengracht 89 1018 VR Amsterdam Nederland: Amsterdam University Press, 2022. http://dx.doi.org/10.5117/9789463721462.
Pełny tekst źródłaSociety for Emblem Studies. International Conference. Polyvalenz und Multifunktionalität der Emblematik: Akten des 5. Internationalen Kongresses der Society for Emblem Studies = Multivalence and multifunctionality of the emblem : proceedings of the 5th International Conference of the Society for Emblem Studies. New York: P. Lang, 2002.
Znajdź pełny tekst źródła1941-, Hag Kari, i Broch Ole Jacob, red. The ubiquitous quasidisk. Providence, Rhode Island: American Mathematical Society, 2012.
Znajdź pełny tekst źródłaCulver, Annika A., i Norman Smith, red. Manchukuo Perspectives. Hong Kong University Press, 2020. http://dx.doi.org/10.5790/hongkong/9789888528134.001.0001.
Pełny tekst źródłaMuller, Hannah Weiss. The Laws of Subjecthood. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190465810.003.0002.
Pełny tekst źródłagerm Society for Emblem Studies International Conference 1999 Munich. Polyvalenz Und Multifunktionalitat Der Emblematik: Akten Des 5. Internationalen Kongresses Der Society For Emblem Studies = Multivalence And Multifunctionality ... (Frankfurt Am Main, Germany), Bd. 65.). Peter Lang Publishing, 2002.
Znajdź pełny tekst źródłaDavison, Claire. Cross-Channel Modernisms. Redaktorzy Derek Ryan i Jane A. Goldman. Edinburgh University Press, 2020. http://dx.doi.org/10.3366/edinburgh/9781474441872.001.0001.
Pełny tekst źródłaEdwards, Leigh H. Country Music and Class. Redaktor Travis D. Stimeling. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780190248178.013.19.
Pełny tekst źródłaCzęści książek na temat "Ion multivalent"
Dubinin, Vladimir N. "Multivalent Functions". W Condenser Capacities and Symmetrization in Geometric Function Theory, 277–304. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0843-9_8.
Pełny tekst źródłaRocchi, Paolo. "Bivalent and Multivalent Logic". W Series in Computer Science, 121–29. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0109-1_13.
Pełny tekst źródłaHayman, Walter K., i Eleanor F. Lingham. "Univalent and Multivalent Functions". W Problem Books in Mathematics, 133–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25165-9_6.
Pełny tekst źródłaRichards, Sarah-Jane, Caroline I. Biggs i Matthew I. Gibson. "Multivalent Glycopolymer-Coated Gold Nanoparticles". W Methods in Molecular Biology, 169–79. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3130-9_14.
Pełny tekst źródłaPannier, Nadine, Valerie Humblet, Preeti Misra, John Frangioni V. i Wolfgang Maison. "Multivalent peptidomimetics for tumor targeting". W Advances in Experimental Medicine and Biology, 403–4. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-73657-0_174.
Pełny tekst źródłaBrown, Steven D. "Multivalent Display Using Hybrid Virus Nanoparticles". W Methods in Molecular Biology, 119–40. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7893-9_10.
Pełny tekst źródłaLiu, Cassie J., i Jennifer R. Cochran. "Engineering Multivalent and Multispecific Protein Therapeutics". W Engineering in Translational Medicine, 365–96. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4372-7_14.
Pełny tekst źródłaChinarev, Alexander A., Oxana E. Galanina i Nicolai V. Bovin. "Biotinylated Multivalent Glycoconjugates for Surface Coating". W Methods in Molecular Biology, 67–78. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-454-8_5.
Pełny tekst źródłaHuynh, Kim, i Marie-Pierre Merlateau. "Uncertainty, Multivalence and Growth". W Human Capital Creation in an Economic Perspective, 196–213. Heidelberg: Physica-Verlag HD, 1994. http://dx.doi.org/10.1007/978-3-642-99776-1_10.
Pełny tekst źródłaYamini, Goli, i Ekaterina M. Nestorovich. "Multivalent Inhibitors of Channel-Forming Bacterial Toxins". W Current Topics in Microbiology and Immunology, 199–227. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/82_2016_20.
Pełny tekst źródłaStreszczenia konferencji na temat "Ion multivalent"
Tan, Qiyan, Weichuan Guo, Gutian Zhao, Yajing Kan, Yinghua Qiu i Yunfei Chen. "Charge Inversion of Mica Surface in Multivalent Electrolytes". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62356.
Pełny tekst źródłaOh, K., U. C. Paek i T. F. Morse. "Photosensitivity in multi-valent rare earth ion doped aluminosilicate glass optical fiber". W Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.jsue.18.
Pełny tekst źródłaLapitsky, Yakov, Sabrina Alam, Udaka de Silva, Jennifer Brown, Carolina Mather i Youngwoo Seo. "Surfactant-loaded Polyelectrolyte/multivalent Ion Coacervates for the Multi-month Release of Antibacterial and Therapeutic Payloads". W Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.267.
Pełny tekst źródłaFeldmann, Felix, Emad W. Al-Shalabi i Waleed AlAmeri. "Carbonate Mineral Effect on Surface Charge Change During Low-Salinity Imbibition". W SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206013-ms.
Pełny tekst źródłaVaclavikova, Barbora. "INFLUENCE�OF�MULTIVALENT�IONS�FOR�ELECTROKINETIC�POTENTIAL�OF�QUARZ�AND�FELDSPAR". W SGEM2012 12th International Multidisciplinary Scientific GeoConference and EXPO. Stef92 Technology, 2012. http://dx.doi.org/10.5593/sgem2012/s04.v2005.
Pełny tekst źródłaMcKenna, Nick, Liane Guillou, Mohammad Javad Hosseini, Sander Bijl de Vroe, Mark Johnson i Mark Steedman. "Multivalent Entailment Graphs for Question Answering". W Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.emnlp-main.840.
Pełny tekst źródłaDatta, Subhra, i Albert Conlisk. "Role of multivalent ions and electrical double layer overlap in electroosmotic nanoflows". W 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-1120.
Pełny tekst źródłaMcClary, Scott, Daniel Long, Kathryn Small, Alan Landers, Ana Sanz-Matias, Paul Kotula, David Prendergast, Katherine Jungjohann i Kevin Zavadil. "Electrolyte Design for Stable Multivalent Metal Anodes." W Proposed for presentation at the 32nd Annual Rio Grande Symposium on Advanced Materials held October 24-24, 2022 in Albuquerque, NM United States. US DOE, 2022. http://dx.doi.org/10.2172/2005914.
Pełny tekst źródłaKwak, Hyung Tae, Ali A. Yousef i Salah Al-Saleh. "New Insights on the Role of Multivalent Ions in Water-Carbonate Rock Interactions". W SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 2014. http://dx.doi.org/10.2118/169112-ms.
Pełny tekst źródłaMcClary, Scott, Daniel Long, Ana Sanz-Matias, Alan Landers, Kathryn Small, Paul Kotula, David Prendergast, Katherine Jungjohann i Kevin Zavadil. "Identifying multivalent metal anode interphases using cryogenic electron microscopy." W Proposed for presentation at the 2022 Fall American Chemical Society Meeting held August 21-25, 2022 in Chicago, IL. US DOE, 2022. http://dx.doi.org/10.2172/2004460.
Pełny tekst źródłaRaporty organizacyjne na temat "Ion multivalent"
Conlisk, A. T., i Minami Yoda. Transport of Multivalent Electrolyte Mixtures in Micro- and Nanochannels. Fort Belvoir, VA: Defense Technical Information Center, listopad 2013. http://dx.doi.org/10.21236/ada607255.
Pełny tekst źródłaPalmer, Guy H., Eugene Pipano, Terry F. McElwain, Varda Shkap i Donald P. Knowles, Jr. Development of a Multivalent ISCOM Vaccine against Anaplasmosis. United States Department of Agriculture, lipiec 1993. http://dx.doi.org/10.32747/1993.7568763.bard.
Pełny tekst źródłaSchwarz, Haiqing L. Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage. Office of Scientific and Technical Information (OSTI), styczeń 2016. http://dx.doi.org/10.2172/1235990.
Pełny tekst źródłaCetinkaya, Asena. Multivalent Functions Involving Srivastava–Tomovski Generalization of the Mittag-Leffler Function Defined in the Nephroid Domain. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, luty 2021. http://dx.doi.org/10.7546/crabs.2021.02.02.
Pełny tekst źródłaSchmidt, Piet. Origins of Effective Charge of Multivalent Ions at a Membrane/Water Interface and Distribution of 2,3,4,5-Tetrachlorophenol in a Membrane Model System. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.6925.
Pełny tekst źródła