Gotowa bibliografia na temat „Ion Conducting Polymer Electrolytes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ion Conducting Polymer Electrolytes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Ion Conducting Polymer Electrolytes"
Kohl, Paul, Mrinmay Mandal, Mengjie Chen, Habin Park i Parin Shah. "(Invited) Anion Conducting Solid Polymer Ionomers Electrolytes for Fuel Cells and Electrolyzers". ECS Meeting Abstracts MA2022-02, nr 46 (9.10.2022): 1718. http://dx.doi.org/10.1149/ma2022-02461718mtgabs.
Pełny tekst źródłaWatanabe, Masayoshi. "Ion Conducting Polymers Polymer Electrolytes." Kobunshi 42, nr 8 (1993): 702–5. http://dx.doi.org/10.1295/kobunshi.42.702.
Pełny tekst źródłaScrosati, Bruno. "Ion-conducting polymer electrolytes". Philosophical Magazine B 59, nr 1 (styczeń 1989): 151–60. http://dx.doi.org/10.1080/13642818908208454.
Pełny tekst źródłaGhorbanzade, Pedram, Laura C. Loaiza i Patrik Johansson. "Plasticized and salt-doped single-ion conducting polymer electrolytes for lithium batteries". RSC Advances 12, nr 28 (2022): 18164–67. http://dx.doi.org/10.1039/d2ra03249j.
Pełny tekst źródłaLee, Kyoung-Jin, Eun-Jeong Yi, Gangsanin Kim i Haejin Hwang. "Synthesis of Ceramic/Polymer Nanocomposite Electrolytes for All-Solid-State Batteries". Journal of Nanoscience and Nanotechnology 20, nr 7 (1.07.2020): 4494–97. http://dx.doi.org/10.1166/jnn.2020.17562.
Pełny tekst źródłaHoffman, Zach J., Alec S. Ho, Saheli Chakraborty i Nitash P. Balsara. "Limiting Current Density in Single-Ion-Conducting and Conventional Block Copolymer Electrolytes". Journal of The Electrochemical Society 169, nr 4 (1.04.2022): 043502. http://dx.doi.org/10.1149/1945-7111/ac613b.
Pełny tekst źródłaOgata, N., K. Sanui, M. Rikukawa, S. Yamada i M. Watanabe. "Super ion conducting polymers for solid polymer electrolytes". Synthetic Metals 69, nr 1-3 (marzec 1995): 521–24. http://dx.doi.org/10.1016/0379-6779(94)02553-b.
Pełny tekst źródłaK Manjula, K. Manjula, i V. John Reddy. "Na+ Ion Conducting Nano-Composite Solid Polymer Electrolyte – Application to Electrochemical Cell". Oriental Journal Of Chemistry 38, nr 5 (31.10.2022): 1204–8. http://dx.doi.org/10.13005/ojc/380515.
Pełny tekst źródłaZhang, Heng, Chunmei Li, Michal Piszcz, Estibaliz Coya, Teofilo Rojo, Lide M. Rodriguez-Martinez, Michel Armand i Zhibin Zhou. "Single lithium-ion conducting solid polymer electrolytes: advances and perspectives". Chemical Society Reviews 46, nr 3 (2017): 797–815. http://dx.doi.org/10.1039/c6cs00491a.
Pełny tekst źródłaLeena Chandra, Manuel Victor, Shunmugavel Karthikeyan, Subramanian Selvasekarapandian, Manavalan Premalatha i Sampath Monisha. "Study of PVAc-PMMA-LiCl polymer blend electrolyte and the effect of plasticizer ethylene carbonate and nanofiller titania on PVAc-PMMA-LiCl polymer blend electrolyte". Journal of Polymer Engineering 37, nr 6 (26.07.2017): 617–31. http://dx.doi.org/10.1515/polyeng-2016-0145.
Pełny tekst źródłaRozprawy doktorskie na temat "Ion Conducting Polymer Electrolytes"
Willgert, Markus. "Solid Polymer Lithium-Ion Conducting Electrolytes for Structural Batteries". Doctoral thesis, KTH, Ytbehandlingsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-144169.
Pełny tekst źródłaQC 20140410
Willgert, Markus. "Solid Polymer Lithium-ion Conducting Electrolytes for Structural Batteries". Licentiate thesis, KTH, Ytbehandlingsteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107182.
Pełny tekst źródłaLINGUA, GABRIELE. "Newly designed single-ion conducting polymer electrolytes enabling advanced Li-metal solid-state batteries". Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2969103.
Pełny tekst źródłaBest, Adam Samuel 1976. "Lithium-ion conducting electrolytes for use in lithium battery applications". Monash University, School of Physics and Materials Engineering, 2001. http://arrow.monash.edu.au/hdl/1959.1/9240.
Pełny tekst źródłaShen, Kuan-Hsuan. "Modeling ion conduction through salt-doped polymers: Morphology, ion solvation, and ion correlations". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595422569403378.
Pełny tekst źródłaGuo, Jiao. "Development of Ion Conductive Polymer Gel Electrolytes and Their Electrochemical and Electromechanical Behavior Studies". University of Akron / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=akron1279140041.
Pełny tekst źródłaÁlvarez, Daniel Jardón. "Study of advanced ion conducting polymers by relaxation, diffusion and spectroscopy NMR methods". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/18/18158/tde-19102016-114611/.
Pełny tekst źródłaO avanço da tecnologia em baterias secundárias de íons lítio envolve o uso de polímeros condutores iônicos como eletrólitos, os quais representam uma solução promissora para obter baterias de maior densidade de energia e segurança. Polímeros condutores são formados através da dissolução de sais de lítio em uma matriz polimérica, como o poli(óxido de etileno) (PEO). Os íons de lítio estão localizados próximos aos oxigênios do PEO, de tal forma que seu movimento está correlacionado com a reorientação das cadeias poliméricas. Espectroscopia por Ressonância magnética nuclear (RMN), junto com medidas de difusão translacional e tempos de relaxação transversal (T2) contribuem para elucidar as estruturas e os processos dinâmicos envolvidos na condutividade iônica. Núcleos com diferente liberdade de movimentação podem ter tempos de T2 diferentes. Experimentos de T2xT2 permitem correlacionar sítios de diferentes propriedades dinâmicas. Neste trabalho, três diferentes polímeros condutores iônicos foram estudados. Primeiro, PEG foi dopado com LiClO4. As propriedades dinâmicas dos íons lítio na fase amorfa foram estudadas com medidas de relaxometria por RMN do núcleo 7Li. Todas as razões de dopagem apresentaram dois T2 diferentes, indicando dos tipos de lítio com dinâmica diferente. A mobilidade, e consequentemente os tempos T2 aumentam com aumento da temperatura. Foi identificado que a dopagem fortemente influencia a dinâmica dos íons lítio, devido à redução da fase cristalina PEG e o aumento da polaridade na amostra. Um máximo local da mobilidade foi observado para y = 8. Com o experimento T2xT2 foram quantificadas as rações de troca entre os dois tipos de lítio. Segundo, o copolímero tribloco PS-PEO-PS dopado com LiTFSI foi analisado através de técnicas de RMN de estado sólido de alta resolução assim como através de medidas de relaxação de 7Li. Medidas de T1ρ e difusão de spin mostraram a influência da dopagem e da razão PS/PEO na mobilidade dos diferentes segmentos e nas distâncias interdomínio das fases lamelares. Terceiro, medidas de difusão através de estados de múltiplos quanta foram feitas em diesterato de polietileno glicol (PEGD) dopado com LiClO4. Estados de triplo quantum foram criados no núcleo 7Li, spin 3/2. Após garantir a eficiência das ferramentas desenvolvidas, foi possível obter coeficientes de difusão confiáveis.
Guha, Thakurta Soma. "Anhydrous State Proton and Lithium Ion Conducting Solid Polymer Electrolytes Based on Sulfonated Bisphenol-A-Poly(Arylene Ethers)". University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1239911460.
Pełny tekst źródłaSpence, Graham Harvey. "New polymer and gel electrolytes for potential application in smart windows". Thesis, Heriot-Watt University, 1998. http://hdl.handle.net/10399/614.
Pełny tekst źródłaVijayakumar, V. "Preparation, characterization and application of proton, lithium and zinc-ion conducting polymer electrolytes for supercapacitors, lithium- and zinc-metal batteries". Thesis(Ph.D.), CSIR-National Chemical Laboratory, 2021. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/5972.
Pełny tekst źródłaUniversity Grants Commissions (UGC), India CSIR, India
AcSIR
Książki na temat "Ion Conducting Polymer Electrolytes"
Rubinson, Judith F., i Harry B. Mark, red. Conducting Polymers and Polymer Electrolytes. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2003-0832.
Pełny tekst źródłaJinli, Qiao, i Okada Tatsuhiro, red. Hydrocarbon polymer electrolytes for fuel cell applications. Hauppauge, N.Y: Nova Science Publishers, 2008.
Znajdź pełny tekst źródłaTatsuhiro, Okada, Saitō Morihiro i Hayamizu Kikuko, red. Perfluorinated polymer electrolyte membranes for fuel cells. New York: Nova Science Publishers, 2008.
Znajdź pełny tekst źródłaSaad, Alshreif A. Development of a novel conducting polymer modified electrode for ion extraction. Leicester: De Montfort University, 1999.
Znajdź pełny tekst źródłaF, Rubinson Judith, Mark Harry B, American Chemical Society. Division of Colloid and Surface Chemistry i American Chemical Society Meeting, red. Conducting polymers and polymer electrolytes: From biology to photovoltaics. Washington, D.C: American Chemical Society, 2002.
Znajdź pełny tekst źródłaConducting Polymers and Polymer Electrolytes: From Biology to Photovoltaics (Acs Symposium Series). An American Chemical Society Publication, 2002.
Znajdź pełny tekst źródłaMehrer, Helmut. Progress in Thermodynamics, Diffusion, Ion and Proton Transport of Ionic Compounds and Ion-Conducting Polymer Films. Trans Tech Publications, Limited, 2016.
Znajdź pełny tekst źródłaProgress in Thermodynamics, Diffusion, Ion and Proton Transport of Ionic Compounds and Ion-Conducting Polymer Films. Trans Tech Publications, Limited, 2016.
Znajdź pełny tekst źródłaWriter, Beta. Lithium-Ion Batteries: A Machine-Generated Summary of Current Research. Springer, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "Ion Conducting Polymer Electrolytes"
Chandra, Angesh, Alok Bhatt i Archana Chandra. "Synthesis and Ion Transport Studies of K+ Ion Conducting Nanocomposite Polymer Electrolytes". W Trends and Applications in Advanced Polymeric Materials, 207–18. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119364795.ch11.
Pełny tekst źródłaKim, Seok, Sung Goo Lee i Soo Jin Park. "Ion Conducting Behaviors of Polymeric Composite Electrolytes Containing Mesoporous Silicates". W Solid State Phenomena, 51–54. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-27-2.51.
Pełny tekst źródłaBrylev, O., M. Duclot, F. Alloin, J. Y. Sanchez i J. L. Souquet. "Single Conductive Polymer Electrolytes: From Pressure Conductivity Measurements to Transport Mechanism". W Materials for Lithium-Ion Batteries, 517–20. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4333-2_32.
Pełny tekst źródłaMallikarjun, A., M. Sangeetha, Maheshwar Reddy Mettu, M. Vikranth Reddy, M. Jaipal Reddy, J. Siva Kumar i T. Sreekanth. "Morphological, Spectroscopic, Structural and Electrical Properties of $${\text{Mg}}^{ + 2}$$ Ion Conducting PMMA: PVDF-HFP Blend Polymer Electrolytes". W Advances in Sustainability Science and Technology, 401–16. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4321-7_34.
Pełny tekst źródłaTominaga, Yoichi. "A New Class of Ion-Conductive Polymer Electrolytes: CO2/Epoxide Alternating Copolymers With Lithium Salts". W Synthesis and Applications of Copolymers, 215–38. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118860168.ch8.
Pełny tekst źródłaTsuchida, E. "Polymeric Solid Electrolyte and Ion-Conduction". W Progress in Pacific Polymer Science, 153–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84115-6_20.
Pełny tekst źródłaScrosati, Bruno. "Lithium Polymer Electrolytes". W Advances in Lithium-Ion Batteries, 251–66. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47508-1_9.
Pełny tekst źródłaHartnig, Christoph, i Michael Schmidt. "Electrolytes and conducting salts". W Lithium-Ion Batteries: Basics and Applications, 59–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53071-9_6.
Pełny tekst źródłaSakai, Yoshiro. "Ion Conducting Polymer Sensors". W Polymer Sensors and Actuators, 1–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04068-3_1.
Pełny tekst źródłaRost, A., J. Schilm, M. Kusnezoff i A. Michaelis. "Li-Ion Conducting Solid Electrolytes". W Ceramic Materials for Energy Applications III, 25–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118807934.ch3.
Pełny tekst źródłaStreszczenia konferencji na temat "Ion Conducting Polymer Electrolytes"
Ogata, N., K. Sanui, M. Rikukawa, S. Yamada i M. Watanabe. "Super ion conducting polymers for solid polymer electrolytes". W International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835672.
Pełny tekst źródłaHashmi, S. A., H. M. Upadhyaya i Awalendra K. Thakur. "SODIUM ION CONDUCTING COMPOSITE POLYMER ELECTROLYTES FOR BATTERY APPLICATIONS". W Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0072.
Pełny tekst źródłaRajendran, S., Chithra M. Mathew, T. Marimuthu i K. Kesavan. "Li ion conducting gel polymer electrolytes based on Poly(vinyl acetate)". W PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810457.
Pełny tekst źródłaVenugopal, Vinithra, Hao Zhang i Vishnu-Baba Sundaresan. "A Chemo-Mechanical Constitutive Model for Conducting Polymers". W ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3218.
Pełny tekst źródłaIsa, K. B. Md, L. Othman, D. Hambali, Z. Zainuddin i Z. Osman. "Na-ion conducting gel polymer electrolytes based on polyvinylidenefluoride-co-hexafluoropropylene with sodium trifluoromethane-sulfonate". W GREEN DESIGN AND MANUFACTURE: ADVANCED AND EMERGING APPLICATIONS: Proceedings of the 4th International Conference on Green Design and Manufacture 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5066869.
Pełny tekst źródłaNorthcutt, Robert, Vishnu-Baba Sundaresan, Sergio Salinas i Hao Zhang. "Polypyrrole Bridge as a Support for Alamethicin-Reconstituted Planar Bilayer Lipid Membranes". W ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5015.
Pełny tekst źródłaBRAHMANANDHAN, G. M., J. MALATHI, M. HEMA, G. HIRANKUMAR, D. KHANNA, D. ARUN KUMAR i S. SELVASEKARAPANDIAN. "STUDY OF Na+ ION CONDUCTION IN PVA-NaSCN SOLID POLYMER ELECTROLYTES". W Proceedings of the 10th Asian Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773104_0077.
Pełny tekst źródłaGohel, Khushbu, i D. K. Kanchan. "Conductivity and dielectric behavior of lithium ion conducting gel polymer electrolyte". W NATIONAL CONFERENCE ON ADVANCED MATERIALS AND NANOTECHNOLOGY - 2018: AMN-2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5052103.
Pełny tekst źródłaHarshlata, Kuldeep Mishra i D. K. Rai. "Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique". W DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029181.
Pełny tekst źródłaDuncan, Andrew J., Timothy E. Long i Donald J. Leo. "Design for Optimized Electromechanical Transduction in Ionic Polymer Transducers Fabricated With Architecturally Controlled Ionomers". W ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2009. http://dx.doi.org/10.1115/smasis2009-1373.
Pełny tekst źródłaRaporty organizacyjne na temat "Ion Conducting Polymer Electrolytes"
Arnold, John. Supramolecular Engineering of New Lithium Ion Conducting Polymer Electrolytes. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2001. http://dx.doi.org/10.21236/ada431777.
Pełny tekst źródłaFeld, William A., i Denise M. Weimers. Single Lithium Ion Conducting Polymer Electrolyte. Fort Belvoir, VA: Defense Technical Information Center, maj 1998. http://dx.doi.org/10.21236/ada353668.
Pełny tekst źródłaFeld, William A. Aerospace Power Scholarly Research Program. Delivery Order 0007: Single Lithium Ion Conducting Polymer Electrolyte. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2005. http://dx.doi.org/10.21236/ada444661.
Pełny tekst źródłaPintauro, Peter. High-Performance Li-Ion Battery Anodes from Electrospun Nanoparticle/Conducting Polymer Nanofibers. Office of Scientific and Technical Information (OSTI), marzec 2020. http://dx.doi.org/10.2172/1603318.
Pełny tekst źródłaShriver, D. F., i M. A. Ratner. Mixed ionic-electronic conduction and percolation in polymer electrolyte metal oxide composites. Final report. Office of Scientific and Technical Information (OSTI), czerwiec 1997. http://dx.doi.org/10.2172/491618.
Pełny tekst źródłaGreenbaum, Steven G. Lithium Ion Transport Across and Between Phase Boundaries in Heterogeneous Polymer Electrolytes, Based on PVdF. Fort Belvoir, VA: Defense Technical Information Center, luty 1998. http://dx.doi.org/10.21236/ada344887.
Pełny tekst źródła