Gotowa bibliografia na temat „Ion Conducting Glasses”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ion Conducting Glasses”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Ion Conducting Glasses"
Mehrer, Helmut. "Diffusion and Ion Conduction in Cation-Conducting Oxide Glasses". Diffusion Foundations 6 (luty 2016): 59–106. http://dx.doi.org/10.4028/www.scientific.net/df.6.59.
Pełny tekst źródłaJacob, Sarah, John Javornizky, George H. Wolf i C. Austen Angell. "Oxide ion conducting glasses". International Journal of Inorganic Materials 3, nr 3 (czerwiec 2001): 241–51. http://dx.doi.org/10.1016/s1466-6049(01)00024-1.
Pełny tekst źródłaMinami, Tsutomu. "Fast ion conducting glasses". Journal of Non-Crystalline Solids 73, nr 1-3 (sierpień 1985): 273–84. http://dx.doi.org/10.1016/0022-3093(85)90353-9.
Pełny tekst źródłaBurckhardt, W., B. Rudolph i U. Schütze. "New Li+-ion conducting glasses". Solid State Ionics 28-30 (wrzesień 1988): 739–42. http://dx.doi.org/10.1016/s0167-2738(88)80137-1.
Pełny tekst źródłaBurckhardt, W. "New Li+-ion conducting glasses". Solid State Ionics 36, nr 3-4 (listopad 1989): 153–54. http://dx.doi.org/10.1016/0167-2738(89)90160-4.
Pełny tekst źródłaKADONO, K., K. MITANI, M. YAMASHITA i H. TANAKA. "New lithium ion-conducting glasses". Solid State Ionics 47, nr 3-4 (wrzesień 1991): 227–30. http://dx.doi.org/10.1016/0167-2738(91)90243-5.
Pełny tekst źródłaPradel, A., i M. Ribes. "Ion transport in superionic conducting glasses". Journal of Non-Crystalline Solids 172-174 (wrzesień 1994): 1315–23. http://dx.doi.org/10.1016/0022-3093(94)90658-0.
Pełny tekst źródłaWeitzel, Karl Michael. "Bombardment Induced Ion Transport through Ion Conducting Glasses". Diffusion Foundations 6 (luty 2016): 107–43. http://dx.doi.org/10.4028/www.scientific.net/df.6.107.
Pełny tekst źródłaPietrzak, Tomasz K., Marek Wasiucionek i Jerzy E. Garbarczyk. "Towards Higher Electric Conductivity and Wider Phase Stability Range via Nanostructured Glass-Ceramics Processing". Nanomaterials 11, nr 5 (17.05.2021): 1321. http://dx.doi.org/10.3390/nano11051321.
Pełny tekst źródłaBhattacharya, S., i A. Ghosh. "Electrical properties of ion conducting molybdate glasses". Journal of Applied Physics 100, nr 11 (2006): 114119. http://dx.doi.org/10.1063/1.2400116.
Pełny tekst źródłaRozprawy doktorskie na temat "Ion Conducting Glasses"
Hadzifejzovic, Emina. "Electrical and structural aspects of Li-ion conducting phosphate based glasses and glass ceramics". Thesis, Queen Mary, University of London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408396.
Pełny tekst źródłaTrott, Christian Robert [Verfasser], Philipp [Akademischer Betreuer] Maaß, Erich [Akademischer Betreuer] Runge i Hans [Akademischer Betreuer] Babovsky. "LAMMPScuda - a new GPU accelerated Molecular Dynamics Simulations Package and its Application to Ion-Conducting Glasses / Christian Robert Trott. Gutachter: Erich Runge ; Hans Babovsky. Betreuer: Philipp Maaß". Ilmenau : Universitätsbibliothek Ilmenau, 2012. http://d-nb.info/1020401990/34.
Pełny tekst źródłaTrott, Christian [Verfasser], Philipp [Akademischer Betreuer] Maaß, Erich [Akademischer Betreuer] Runge i Hans [Akademischer Betreuer] Babovsky. "LAMMPScuda - a new GPU accelerated Molecular Dynamics Simulations Package and its Application to Ion-Conducting Glasses / Christian Robert Trott. Gutachter: Erich Runge ; Hans Babovsky. Betreuer: Philipp Maaß". Ilmenau : Universitätsbibliothek Ilmenau, 2012. http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2011000472.
Pełny tekst źródłaNiyompan, Anuson. "Fast-ion conducting glass and glass-ceramics for the pH sensor". Thesis, University of Warwick, 2002. http://wrap.warwick.ac.uk/98497/.
Pełny tekst źródłaCampbell, A. G. "Electrical processes at metallic contacts to sodium ion conducting glass". Thesis, University of Edinburgh, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378729.
Pełny tekst źródłaKingdom, Rachel Michele. "Conducting Polymer Matrix Poly(2,2’-Bithiophene) Mercuric Metal Ion Incorporation". Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1259889438.
Pełny tekst źródłaSalami, Taiye James. "Novel Conductive Glass-Perovskites as Solid Electrolytes in Lithium – ion Batteries". University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1533220964477566.
Pełny tekst źródłaBenmore, Christopher James. "A neutron diffraction study on the structure of fast-ion conducting and semiconducting glassy chalcogenide alloys". Thesis, University of East Anglia, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334267.
Pełny tekst źródłaNuernberg, Rafael. "Lithium ion conducting glass-ceramics with NASICON-type structure based on the Li1+x Crx (Gey Ti1-y)2-x (PO4)3 system". Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS141/document.
Pełny tekst źródłaThe primary goal of this work is to develop a new NASICON-structured glass-ceramic with high Li-ion conductivity. Therefore, this work introduces a new series of NASICON-type compositions based on the Li1+xCrx(GeyTi1-y)2-x(PO4)3 system. At first, a specific composition of this system is synthesized by the melt-quenching method, followed by crystallization. The crystallization behavior of the precursor glass is examined by differential scanning calorimetry and infrared spectroscopy. The main results indicate that the precursor glass presents homogeneous nucleation, has considerable glass stability and crystallizes a NASICON-like phase, which allows solid electrolytes to be obtained by the glass-ceramic route. As a second step, we examine the effect of substituting Ti by Cr and Ge on the glass stability of the precursor glass, on the structural parameters of NASICON-like phase and the electrical properties of the glass-ceramics. Hence, a set of sixteen compositions of this system is synthesized. The main results indicate that the glass stability increases when Ti is replaced by Ge and Cr. After crystallization, all the glass-ceramics present NASICON-like phase, and their lattice parameters decrease with Ge and increase with Cr content, making it possible to adjust the unit cell volume of the NASICON-type structure. Furthermore, the ionic conductivity and activation energy for lithium conduction in the glass-ceramics are notably dependent on the unit cell volume of the NASICON-type structure. Finally, the electrochemical stability window of the NASICON-structured glass-ceramics of highest ionic conductivity is investigated. Cyclic voltammetry measurements are followed by in situ electrochemical impedance spectroscopy, enabling the effect of oxidation and reduction reactions on the electrical properties of the glass-ceramics in question to be determined. X-ray photoelectron spectroscopy, in turn, is applied to determine which chemical species undergo reduction/oxidation. Our findings reveal that the electrochemical stability of this material is limited by the reduction of Ti+4 cations in low potentials and by the oxidation of O-2 anions in high potentials. At high potentials, similar behavior is also encountered for other well-known NASICON-like Li-ion conducting suggesting that the electrochemical behavior in oxidative potentials could be generalized for NASICON-structured phosphates
Paraskiva, Alla. "Développement de membranes pour les capteurs chimiques potentiométriques spécifiques aux ions Thallium et Sodium". Thesis, Littoral, 2017. http://www.theses.fr/2017DUNK0466/document.
Pełny tekst źródłaThe aim of this thesis was to study the physicochemical properties of the chalcogenide glasses for possibility to use them as the chemical sensor membranes for the quantitative analysis of TI⁺ and NA⁺ ions. Firstly, the measurements of the macroscopic properties such as the densities and the characteristic temperatures (Tg, Tc, Tf) and their analysis according to the glass compositions were carried out. After that, the transport properties were studied through complex impedance conductivity measurements and from dc conductivity measurements. These experiments have shown the mixed cation effect in three chalcogenide glassy systems with TI/Ag ions and the percolation regime in the NaCl-Ga₂S₃-GeS₂ system. Then the silver ¹⁰⁸mAg and thallium ²⁰⁴TI tracer diffusion measurements were carried out for (TI₂S)ₓ(Ag₂S)₅₀₋ₓ(GeS)₂₅(GeS₂)₂₅ system. The result permit to explain the mixed cation effect. In order to better understand the transport phenomena of the studied systems, the various structural studies have been deployed using Raman spectroscopy, neutron diffraction and high energy X-ray diffraction. Finally, the last part of this work is entirely devoted to the characterization of new chemical sensors for detection of TI⁺ and NA⁺ ions in solution. In the first case, the sensors with different membrane compositions were tested for defining the sensitivity, the detection limit, the selectivity coefficients in the presence of interfering ions, the reproductibility, the pH influence. In addition, the ionic exchange with radioactive isotopes ²⁰⁴TI between the solution and the GeS₂ or Ge₂S₃ based glasses was performed for understanding and explaining the significant differences in the sensitivity and the detection limit presented by the sensors whose membranes have the similar glass compositions. In the second case, the studies shows the existence of sensitivity for NA⁺ ions so the development of sensors for the determination of sodium ions is possible
Książki na temat "Ion Conducting Glasses"
Mehrer, Helmut. Progress in Ion Transport and Structure of Ion Conducting Compounds and Glasses. Trans Tech Publications, Limited, 2016.
Znajdź pełny tekst źródłaHelmut, Mehrer. Progress in Ion Transport and Structure of Ion Conducting Compounds and Glasses. Trans Tech Publications, Limited, 2016.
Znajdź pełny tekst źródłaCameron, Allan. Visceral Screens. Edinburgh University Press, 2020. http://dx.doi.org/10.3366/edinburgh/9781474419192.001.0001.
Pełny tekst źródłaCzęści książek na temat "Ion Conducting Glasses"
Gordon, R. S. "Sodium Ion Conducting Glasses". W Inorganic Reactions and Methods, 211–12. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch144.
Pełny tekst źródłaJulien, Christian, i Gholam-Abbas Nazri. "Materials for electrolyte: Fast-ion-conducting glasses". W The Kluwer International Series in Engineering and Computer Science, 183–283. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2704-6_3.
Pełny tekst źródłaBalkanski, M., R. F. Wallis, J. Deppe i M. Massot. "Dynamical Properties of Fast Ion Conducting Borate Glasses". W Solid State Materials, 53–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-09935-3_4.
Pełny tekst źródłaNogami, M. "Ion Conducting Coatings". W Sol-Gel Technologies for Glass Producers and Users, 175–78. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-387-88953-5_24.
Pełny tekst źródłaMagistris, A. "Ionic Conduction in Glasses". W Fast Ion Transport in Solids, 213–30. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1916-0_12.
Pełny tekst źródłaHiki, Y., H. Takahashi i Y. Kogure. "Thermal Transport in Superionic Conducting Glasses". W Springer Series in Solid-State Sciences, 295–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9_117.
Pełny tekst źródłaBalkanski, M., R. F. Wallis i I. Darianian. "Free Lithium Ion Conduction in Lithium Borate Glasses Doped with Li2SO4". W NATO ASI Series, 317–18. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0509-5_16.
Pełny tekst źródłaElliott, S. R. "A. C. Conduction in Chalcogenide Glasses". W Structure and Bonding in Noncrystalline Solids, 251–84. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-9477-2_14.
Pełny tekst źródłaElliott, S. R. "Non-Debye-Like Dielectric Relaxation in Ionically and Electronically Conducting Glasses". W Relaxation in Complex Systems and Related Topics, 251–60. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2136-9_34.
Pełny tekst źródłaTakayanagi, M. "Microcomposite Formation of p-Aramid with Inorganic Glass and Conductive Polymers". W Progress in Pacific Polymer Science 2, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77636-6_1.
Pełny tekst źródłaStreszczenia konferencji na temat "Ion Conducting Glasses"
HAYASHI, Akitoshi, Ryoichi KOMIYA, Masahiro TATSUMISAGO i Tsutomu MINAMI. "DEVELOPMENT OF LITHIUM ION CONDUCTING OXYSULFIDE GLASSES". W Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0025.
Pełny tekst źródłaAgrawal, R. C., M. L. Verma i A. Bhatt. "POLARIZATION/SELF-DEPOLARIZATION STUDIES ON SOME FAST Ag+ ION CONDUCTING GLASSES". W Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0087.
Pełny tekst źródłaKonidakis, Ioannis, i Stavros Pissadakis. "All-glass photonic bandgap fibers and fiber-tapers infiltrated with silver fast-ion-conducting glasses". W 2015 17th International Conference on Transparent Optical Networks (ICTON). IEEE, 2015. http://dx.doi.org/10.1109/icton.2015.7193545.
Pełny tekst źródłaAgrawal, R. C., M. L. Verma, R. Kumar i C. K. Sinha. "SOLID STATE BATTERY DISCHARGE CHARACTERISTIC STUDIES ON SOME NEW Ag+ ION CONDUCTING GLASSES". W Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0020.
Pełny tekst źródłaMatsuo, S., H. Yugami, M. Ishigame i S. Shin. "Hole-burning in proton conducting oxide SrZrO3: Pr3+". W Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd52.
Pełny tekst źródłaBalkanski, Minko. "Invited Paper Fast Ion Conducting Glasses And Intercalation Compounds, Constituents Of Solid State Micro-Batteries, Characterized By Light Scattering, Luminescence And Optical Absorption". W 31st Annual Technical Symposium, redaktorzy Fran Adar i James E. Griffiths. SPIE, 1988. http://dx.doi.org/10.1117/12.941939.
Pełny tekst źródłaRathan, S. Vinoth, Aashaq Hussain Shah, G. Govindaraj, Alka B. Garg, R. Mittal i R. Mukhopadhyay. "Ac Conductivity and Electrical Relaxation in ion conducting Li[sub 4]Nb[sub 1−x] Zn[sub 2.5x]P[sub 3]O[sub 12] glasses". W SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3606213.
Pełny tekst źródłaMenezes, P. V., J. Martin, M. Schafer i K. M. Weitzel. "Bombardment induced ion transport through an ion-conducting Ca30 glass". W 2011 IEEE 14th International Symposium on Electrets ISE 14. IEEE, 2011. http://dx.doi.org/10.1109/ise.2011.6084970.
Pełny tekst źródłaTakaoka, Gikan, H. Ryuto i M. Takeuchi. "Surface Interaction and Processing Using Polyatomic Cluster Ions". W 13th International Conference on Plasma Surface Engineering September 10 - 14, 2012, in Garmisch-Partenkirchen, Germany. Linköping University Electronic Press, 2013. http://dx.doi.org/10.3384/wcc2.18-21.
Pełny tekst źródłaSidebottom, David L. "SCALING PROPERTIES OF ION CONDUCTION AND WHAT THEY REVEAL ABOUT ION MOTION IN GLASSES". W Proceedings of the 1st International Discussion Meeting. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706904_0020.
Pełny tekst źródłaRaporty organizacyjne na temat "Ion Conducting Glasses"
Tuller, H. Electrical conduction and corrosion processes in fast ion conducting glasses. Office of Scientific and Technical Information (OSTI), styczeń 1990. http://dx.doi.org/10.2172/7158324.
Pełny tekst źródłaMeyer, Benjamin Michael. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses. Office of Scientific and Technical Information (OSTI), styczeń 2003. http://dx.doi.org/10.2172/815760.
Pełny tekst źródłaYao, Wenlong. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses. Office of Scientific and Technical Information (OSTI), styczeń 2006. http://dx.doi.org/10.2172/897364.
Pełny tekst źródła