Gotowa bibliografia na temat „Ion Beam Lithography”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ion Beam Lithography”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Ion Beam Lithography"

1

GAMO, Kenji. "Ion beam lithography." Journal of the Japan Society for Precision Engineering 53, nr 11 (1987): 1677–81. http://dx.doi.org/10.2493/jjspe.53.1677.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Tsarik, K. A. "Focused Ion Beam Exposure of Ultrathin Electron-Beam Resist for Nanoscale Field-Effect Transistor Contacts Formation". Proceedings of Universities. Electronics 26, nr 5 (2021): 353–62. http://dx.doi.org/10.24151/1561-5405-2021-26-5-353-362.

Pełny tekst źródła
Streszczenie:
The lithographic methods are used to form contacts for nanostructures smaller than 100 nm , in part, e-beam lithography and focused ion beam lithography with the use of electron-sensitive resist. Focused ion beam lithography is characterized by greater susceptibility to resist, high value of backward scattering, proximity effect, and best ratio of speed performance and contrast to exposed elements’ minimal size, compared to e-beam lithography. In this work, a method of ultrathin resist exposure by focused ion beam is developed. Electron-sensitive resist thickness dependence on increase of its toluene dilution was established. It was shown that electron-sensitive resist thinning down to 30 μm based on α-chloro-methacrylate with α-methylstyrene allows the 500-nm gapped metal contacts formation over a span of 30 μm. Silicon nanostructures within metallic nanoscale gap on dielectric substrate have been obtained. The geometry of obtained nanostructures was studied by optical, electron, ion, and probe microscopy. It has been established that it is possible to not use additional alignment keys when nanoscale field-effect transistors are created based on silicon nanostructures.
Style APA, Harvard, Vancouver, ISO itp.
3

WATT, F., A. A. BETTIOL, J. A. VAN KAN, E. J. TEO i M. B. H. BREESE. "ION BEAM LITHOGRAPHY AND NANOFABRICATION: A REVIEW". International Journal of Nanoscience 04, nr 03 (czerwiec 2005): 269–86. http://dx.doi.org/10.1142/s0219581x05003139.

Pełny tekst źródła
Streszczenie:
To overcome the diffraction constraints of traditional optical lithography, the next generation lithographies (NGLs) will utilize any one or more of EUV (extreme ultraviolet), X-ray, electron or ion beam technologies to produce sub-100 nm features. Perhaps the most under-developed and under-rated is the utilization of ions for lithographic purposes. All three ion beam techniques, FIB (Focused Ion Beam), Proton Beam Writing (p-beam writing) and Ion Projection Lithography (IPL) have now breached the technologically difficult 100 nm barrier, and are now capable of fabricating structures at the nanoscale. FIB, p-beam writing and IPL have the flexibility and potential to become leading contenders as NGLs. The three ion beam techniques have widely different attributes, and as such have their own strengths, niche areas and application areas. The physical principles underlying ion beam interactions with materials are described, together with a comparison with other lithographic techniques (electron beam writing and EUV/X-ray lithography). IPL follows the traditional lines of lithography, utilizing large area masks through which a pattern is replicated in resist material which can be used to modify the near-surface properties. In IPL, the complete absence of diffraction effects coupled with ability to tailor the depth of ion penetration to suit the resist thickness or the depth of modification are prime characteristics of this technique, as is the ability to pattern a large area in a single brief irradiation exposure without any wet processing steps. p-beam writing and FIB are direct write (maskless) processes, which for a long time have been considered too slow for mass production. However, these two techniques may have some distinct advantages when used in combination with nanoimprinting and pattern transfer. FIB can produce master stamps in any material, and p-beam writing is ideal for producing three-dimensional high-aspect ratio metallic stamps of precise geometry. The transfer of large scale patterns using nanoimprinting represents a technique of high potential for the mass production of a new generation of high area, high density, low dimensional structures. Finally a cross section of applications are chosen to demonstrate the potential of these new generation ion beam nanolithographies.
Style APA, Harvard, Vancouver, ISO itp.
4

Voznyuk G. V., Grigorenko I. N., Mitrofanov M. I., Nikolaev V. V. i Evtikhiev V. P. "Subwave textured surfaces for the radiation coupling from the waveguide". Technical Physics Letters 48, nr 3 (2022): 76. http://dx.doi.org/10.21883/tpl.2022.03.52896.19103.

Pełny tekst źródła
Streszczenie:
The paper presents a procedure for creating on GaAs(100) substrates textured surfaces by ion-beam etching with a focused beam. The possibility of flexibly controlling the shape and profile of the formed submicron elements of textured media is shown; this will later allow formation of textured surfaces of almost any complexity for realizing the surface radiation coupling from the waveguide. Original lithographic masks were developed, and 3D lithography was accomplished. The obtained lithographic patterns were controlled by the methods of optical, electron and atomic force microscopy. Keywords: ion-beam etching, metasurface, textured surface, lithography, surface coupling of radiation.
Style APA, Harvard, Vancouver, ISO itp.
5

Huh, J. S. "Focused ion beam lithography". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 9, nr 1 (styczeń 1991): 173. http://dx.doi.org/10.1116/1.585282.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Löschner, H. "Projection ion beam lithography". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 11, nr 6 (listopad 1993): 2409. http://dx.doi.org/10.1116/1.586996.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Gamo, Kenji. "Focused ion beam lithography". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 65, nr 1-4 (marzec 1992): 40–49. http://dx.doi.org/10.1016/0168-583x(92)95011-f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Melngailis, John. "Focused ion beam lithography". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 80-81 (styczeń 1993): 1271–80. http://dx.doi.org/10.1016/0168-583x(93)90781-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Joshi-Imre, Alexandra, i Sven Bauerdick. "Direct-Write Ion Beam Lithography". Journal of Nanotechnology 2014 (2014): 1–26. http://dx.doi.org/10.1155/2014/170415.

Pełny tekst źródła
Streszczenie:
Patterning with a focused ion beam (FIB) is an extremely versatile fabrication process that can be used to create microscale and nanoscale designs on the surface of practically any solid sample material. Based on the type of ion-sample interaction utilized, FIB-based manufacturing can be both subtractive and additive, even in the same processing step. Indeed, the capability of easily creating three-dimensional patterns and shaping objects by milling and deposition is probably the most recognized feature of ion beam lithography (IBL) and micromachining. However, there exist several other techniques, such as ion implantation- and ion damage-based patterning and surface functionalization types of processes that have emerged as valuable additions to the nanofabrication toolkit and that are less widely known. While fabrication throughput, in general, is arguably low due to the serial nature of the direct-writing process, speed is not necessarily a problem in these IBL applications that work with small ion doses. Here we provide a comprehensive review of ion beam lithography in general and a practical guide to the individual IBL techniques developed to date. Special attention is given to applications in nanofabrication.
Style APA, Harvard, Vancouver, ISO itp.
10

Miller, Paul A. "Image-projection ion-beam lithography". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 7, nr 5 (wrzesień 1989): 1053. http://dx.doi.org/10.1116/1.584594.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Ion Beam Lithography"

1

Heard, P. J. "Applications of scanning ion beam lithography". Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372653.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Alves, Andrew David Charles, i aalves@unimelb edu au. "Characterisation of Single Ion Tracks for use in Ion Beam Lithography". RMIT University. Applied Sciences, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080414.135656.

Pełny tekst źródła
Streszczenie:
To investigate the ultimate resolution in ion beam lithography (IBL) the resist material poly(methyl methacrylate) PMMA has been modified by single ion impacts. The latent damage tracks have been etched prior to imaging and characterisation. The interest in IBL comes from a unique advantage over more traditional electron beam or optical lithography. An ion with energy of the order of 1 MeV per nucleon evenly deposits its energy over a long range in a straight latent damage path. This gives IBL the ability to create high aspect ratio structures with a resolution in the order of 10 nm. Precise ion counting into a spin coated PMMA film on top of an active substrate enabled control over the exact fluence delivered to the PMMA from homogenously irradiated areas down to separated single ion tracks. Using the homogenous areas it was possible to macroscopically measure the sensitivity of the PMMA as a function of the developing parameters. Separated single ion tracks wer e created in the PMMA using 8 MeV F, 71 MeV Cu and 88 MeV I ions. These ion tracks were etched to create voids in the PMMA film. For characterisation the tracks were imaged primarily with atomic force microscopy (AFM) and also with scanning electron microscopy (SEM). The series of studies presented here show that the sensitivity of the resist-developer combination can be tailored to allow the etching of specific single ion tracks. With the ability to etch only the damage track, and not the bulk material, one may experimentally characterise the damage track of any chosen ion. This offers the scientific community a useful tool in the study and fabrication of etched ion tracks. Finally work has been conducted to allow the precise locating of an ion beam using a nanoscale mask and piezoelectrically driven scanning stage. This method of beam locating has been trailed in conjunction with single ion detection in an effort to test the practical limits of ion beam lithography in the single ion realm.
Style APA, Harvard, Vancouver, ISO itp.
3

Puretz, Joseph. "A theoretical and experimental study of liquid metal ion sources and their application to focused ion beam technology /". Full text open access at:, 1988. http://content.ohsu.edu/u?/etd,182.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Yasaka, Anto. "Feasibility study of spatial-phase-locked focused-ion-beam lithography". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/32663.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

O'Neill, Robin W. "Characterisation of micron sized ferromagnetic structures fabricated by focussed ion beam and electron beam lithography". Thesis, University of Glasgow, 2007. http://theses.gla.ac.uk/6256/.

Pełny tekst źródła
Streszczenie:
Traditionally electron beam lithography (EBL) has been used to fabricate micron and sub-micron sized devices, such as Γ and Τ gates for metal-semiconductor devices for study within the semiconductor industry. EBL is also used for the fabrication of ferromagnetic elements for use as components in magnetic random access memory (MRAM) and read/write heads in hard disk drives (HDD). MRAM is being investigated as a direct replacement to standard semiconductor RAM as it has lower power consumption and is a non-volatile memory solution, although the areal density, at present, is not as great. Smaller read/write heads are necessary for HDD as recent advances now allow for perpendicular magnetisation (as opposed to parallel magnetisation) of films and increase the areal density to 100 Gb/inch2, four times the current value. In this thesis, the physical and magnetic properties of such micron-sized devices that have been fabricated by focussed ion beam (FIB) lithography for comparison to those fabricated by the EBL method are discussed. In addition to this work, the physical and magnetic properties of micron-sized element that have been irradiated using the 30 keV gallium ion source are also discussed. Also in this thesis, the results of 10×10 μm2 arrays of 50 nm thick polycrystalline cobalt elements (270×270 nm2 with a 400 nm period) that are fabricated by EBL to determine if there is any magnetic superdomain structure present are discussed. Bright field imaging in a transmission electron microscope (TEM) is used to investigate the physical structure of the ferromagnets, such as the grain size, element roughness and dimensions. Additional information about the topography is measured by atomic force microscopy (AFM). The magnetic properties, such as the magnitude of the applied field at which irreversible events happen and the domain structure, are investigated by the Fresnel imaging and the differential phase contrast modes of Lorentz microscopy. A programme known as object orientated micromagnetic framework (OOMMF) is used to model the magnetic properties of such structures.
Style APA, Harvard, Vancouver, ISO itp.
6

Tucker, Thomas Marshall. "Three dimensional measurement data analysis in stereolithography rapid prototyping". Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/17082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Sager, Benay. "A method for understanding and predicting stereolithography resolution". Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/17832.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Vaseashta, Ashok K. "Photonic studies of defects and amorphization in ion beam damaged GaAs surfaces". Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-08082007-170507/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Cybart, Shane A. "Planar Josephson junctions and arrays by electron beam lithography and ion damage". Diss., Connected to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2005. http://wwwlib.umi.com/cr/ucsd/fullcit?p3190007.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--University of California, San Diego, 2005.
Title from first page of PDF file (viewed March 8, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 108-111).
Style APA, Harvard, Vancouver, ISO itp.
10

Brown, Karl. "Coupled electron gases fabricated by in situ ion beam lithography and MBE growth". Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319460.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Ion Beam Lithography"

1

Gu, Wenqi. Dian zi shu bao guang wei na jia gong ji shu. Beijing: Beijing gong ye da xue chu ban she, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

The physics of submicron lithography. New York: Plenum Press, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Popov, V. K. Raschet i proektirovanie ustroĭstv ėlektronnoĭ i ionnoĭ litografii. Moskva: "Radio i svi͡a︡zʹ", 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

International Symposium on Electron, Ion, and Photon Beams (2nd 1984 Tarrytown, N.Y.). Proceedings of the 1984 International Symposium on Electron, Ion, and Photon Beams, 29 May-1 June, 1984, Westchester Marriott Hotel, Tarrytown, New York. Redaktorzy Kelly J, American Vacuum Society i American Institute of Physics. New York: Published for the American Vacuum Society by the American Institute of Physics, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Dian zi shu sao miao pu guang ji shu. [Peking]: Yu hang chu ban she, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

S, Khokle W., red. Patterning of material layers in submicron region. New York: J. Wiley, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

1931-, Bethge Klaus, red. Ion tracks and microtechnology: Principles and applications. Braunschweig: Vieweg, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

T, Reid David, red. Rapid prototyping & manufacturing: Fundamentals of stereolithography. Dearborn, MI: Society of Manufacturing Engineers in cooperation with the Computer and Automated Systems Association of SME, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

1975-, Ma Xiangguo, i Li Wenping 1976-, red. Ju jiao li zi shu wei na jia gong ji shu. Beijing: Beijing gong ye da xue chu ban she, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

service), SpringerLink (Online, red. Stereolithography: Materials, Processes and Applications. Boston, MA: Springer Science+Business Media, LLC, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Ion Beam Lithography"

1

Gierak, Jacques. "Focused Ion Beam Direct-Writing". W Lithography, 183–232. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557662.ch4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Valiev, Kamil A. "The Physics of Ion-Beam Lithography". W The Physics of Submicron Lithography, 181–300. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3318-4_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Qin, Suran, Na Zhao, Ronghui Jiao, Chunying Zhu, Jiang Liu, Jianmin Shi i Hanchao Fan. "Application of Ion Beam Etching Technology in Spacecraft Encoder Lithography". W Lecture Notes in Electrical Engineering, 380–90. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7123-3_45.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Rose, P. D., E. H. Linfield, G. A. C. Jones i D. A. Ritchie. "3-D Patterned III-V Semiconductor Devices Using High Energy In-Situ Focused Ion Beam Lithography and MBE". W Frontiers in Nanoscale Science of Micron/Submicron Devices, 35–39. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1778-1_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bohlen, Harald, i Werner Kulcke. "Micropositioning for Submicron Electron Beam Lithography". W Progress in Precision Engineering, 174–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84494-2_18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Friedman, Avner. "Mathematical problems in electron beam lithography". W The IMA Volumes in Mathematics and Its Applications, 79–87. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4615-7402-6_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

van Kan, J. A., i K. Ansari. "Box 12: Stamps for Nanoimprint Lithography". W Ion Beams in Nanoscience and Technology, 319–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00623-4_26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wilkinson, C. D. W. "Applications of Electron Beam Lithography to Integrated Optics". W Springer Series in Optical Sciences, 30–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-540-39452-5_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Bögli, V., P. Unger, H. Beneking, B. Greinke, P. Guttmann, B. Niemann, D. Rudolph i G. Schmahl. "Microzone Plate Fabrication by 100 keV Electron Beam Lithography". W Springer Series in Optical Sciences, 80–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-540-39246-0_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Bernstein, G., i D. K. Ferry. "Fabrication of Short-Gate GaAs MESFETs by Electron Beam Lithography". W Springer Proceedings in Physics, 462. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71446-7_36.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Ion Beam Lithography"

1

Alves, Andrew, Sean M. Hearne, P. Reichart, Reiner Siegele, David N. Jamieson i Peter N. Johnston. "Ion beam lithography with single ions". W Smart Materials, Nano-, and Micro-Smart Systems, redaktorzy Jung-Chih Chiao, David N. Jamieson, Lorenzo Faraone i Andrew S. Dzurak. SPIE, 2005. http://dx.doi.org/10.1117/12.582191.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Cardinal, Thomas, Daniel Andruczyk, He Yu, Vibhu Jindal, Patrick Kearney i David N. Ruzic. "Modeling the ion beam target interaction to reduce defects generated by ion beam deposition". W SPIE Advanced Lithography, redaktorzy Patrick P. Naulleau i Obert R. Wood II. SPIE, 2012. http://dx.doi.org/10.1117/12.916878.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Miller, Paul A. "Image-Projection Ion-Beam Lithography". W 1989 Microlithography Conferences, redaktor Arnold W. Yanof. SPIE, 1989. http://dx.doi.org/10.1117/12.968511.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Struck, C. R. M., R. Raju, M. J. Neumann i D. N. Ruzic. "Reducing LER using a grazing incidence ion beam". W SPIE Advanced Lithography, redaktor Clifford L. Henderson. SPIE, 2009. http://dx.doi.org/10.1117/12.814263.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kearney, Patrick, C. C. Lin, Takashi Sugiyama, Chan-Uk Jeon, Rajul Randive, Ira Reiss, Renga Rajan, Paul Mirkarimi i Eberhard Spiller. "Ion beam deposition for defect-free EUVL mask blanks". W SPIE Advanced Lithography, redaktor Frank M. Schellenberg. SPIE, 2008. http://dx.doi.org/10.1117/12.774505.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kearney, Patrick, Vibhu Jindal, Alfred Weaver, Pat Teora, John Sporre, David Ruzic i Frank Goodwin. "Understanding the ion beam in EUV mask blank production". W SPIE Advanced Lithography, redaktorzy Patrick P. Naulleau i Obert R. Wood II. SPIE, 2012. http://dx.doi.org/10.1117/12.916510.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Aihara, R., H. Sawaragi, H. Morimoto i T. Kato. "Focused Ion Beam System For Submicron Lithography". W 1986 Microlithography Conferences, redaktor Phillip D. Blais. SPIE, 1986. http://dx.doi.org/10.1117/12.963685.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ehrmann, Albrecht, Sabine Huber, Rainer Kaesmaier, Andreas B. Oelmann, Thomas Struck, Reinhard Springer, Joerg Butschke i in. "Stencil mask technology for ion beam lithography". W 18th Annual BACUS Symposium on Photomask Technology and Management, redaktorzy Brian J. Grenon i Frank E. Abboud. SPIE, 1998. http://dx.doi.org/10.1117/12.332827.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Springham, Stuart V., Thomas Osipowicz, J. L. Sanchez, Sing Lee i Frank Watt. "Deep ion-beam lithography for micromachining applications". W ISMA '97 International Symposium on Microelectronics and Assembly, redaktorzy Soon Fatt Yoon, Raymond Yu i Chris A. Mack. SPIE, 1997. http://dx.doi.org/10.1117/12.280533.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Luo, Feixiang, Viacheslav Manichev, Mengjun Li, Gavin Mitchson, Boris Yakshinskiy, Torgny Gustafsson, David Johnson i Eric Garfunkel. "Helium ion beam lithography (HIBL) using HafSOx as the resist". W SPIE Advanced Lithography, redaktorzy Christoph K. Hohle i Todd R. Younkin. SPIE, 2016. http://dx.doi.org/10.1117/12.2219239.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Ion Beam Lithography"

1

Ji, Qing. Maskless, resistless ion beam lithography. Office of Scientific and Technical Information (OSTI), styczeń 2003. http://dx.doi.org/10.2172/809301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Jiang, Ximan. Resolution Improvement and Pattern Generator Development for theMaskless Micro-Ion-Beam Reduction Lithography System. Office of Scientific and Technical Information (OSTI), maj 2006. http://dx.doi.org/10.2172/886610.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Liu, Weidong. Electron Specimen Interaction in Low Voltage Electron Beam Lithography,. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1995. http://dx.doi.org/10.21236/ada327202.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii