Gotowa bibliografia na temat „InxGa1-xN”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „InxGa1-xN”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "InxGa1-xN"
Jeong, Myoungho, Hyo Sung Lee, Seok Kyu Han, Eun-Jung-Shin, Soon-Ku Hong, Jeong Yong Lee, Yun Chang Park, Jun-Mo Yang i Takafumi Yao. "Microstructural Characterization of High Indium-Composition InXGa1−XN Epilayers Grown on c-Plane Sapphire Substrates". Microscopy and Microanalysis 19, S5 (sierpień 2013): 145–48. http://dx.doi.org/10.1017/s143192761301252x.
Pełny tekst źródłaManzoor, Habib Ullah, Aik Kwan Tan, Sha Shiong Ng i Zainuriah Hassan. "Carrier Density and Thickness Optimization of InxGa1-xN Layer by Scaps-1D Simulation for High Efficiency III-V Solar CelL". Sains Malaysiana 51, nr 5 (31.05.2022): 1567–76. http://dx.doi.org/10.17576/jsm-2022-5105-24.
Pełny tekst źródłaSong, Juan, Zijiang Luo, Xuefei Liu, Ershi Li, Chong Jiang, Zechen Huang, Jiawei Li, Xiang Guo, Zhao Ding i Jihong Wang. "The Study on Structural and Photoelectric Properties of Zincblende InGaN via First Principles Calculation". Crystals 10, nr 12 (19.12.2020): 1159. http://dx.doi.org/10.3390/cryst10121159.
Pełny tekst źródłaLin, Yu-Chung, Ikai Lo, Cheng-Da Tsai, Ying-Chieh Wang, Hui-Chun Huang, Chu-An Li, Mitch M. C. Chou i Ting-Chang Chang. "Optimization of Ternary InxGa1-xN Quantum Wells on GaN Microdisks for Full-Color GaN Micro-LEDs". Nanomaterials 13, nr 13 (23.06.2023): 1922. http://dx.doi.org/10.3390/nano13131922.
Pełny tekst źródłaHan, Li Jun, Bin Feng Ding i Guo Man Lin. "The Optical and Structural Properties of InxGa1-XN/GaN Multiple Quantum Wells by Metal Organic Chemical Vapor Deposition". Advanced Materials Research 535-537 (czerwiec 2012): 1270–74. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.1270.
Pełny tekst źródłaWu, Ren Tu Ya, i Qi Zhao Feng. "Polaronic Effects in Wurtzite InxGa1-xN/GaN Parabolic Quantum Well". Advanced Materials Research 629 (grudzień 2012): 145–51. http://dx.doi.org/10.4028/www.scientific.net/amr.629.145.
Pełny tekst źródłaKaysir, Md Rejvi, i Rafiqul Islam. "Theoretical Charge Control Investigations in InN-Based Quantum Well Double Heterostructure High Electron Mobility Transistors (QW-DHEMTs)". Advanced Materials Research 403-408 (listopad 2011): 52–58. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.52.
Pełny tekst źródłaTsai, ChengDa, Ikai Lo, YingChieh Wang, ChenChi Yang, HongYi Yang, HueiJyun Shih, HuiChun Huang, Mitch M. C. Chou, Louie Huang i Binson Tseng. "Indium-Incorporation with InxGa1-xN Layers on GaN-Microdisks by Plasma-Assisted Molecular Beam Epitaxy". Crystals 9, nr 6 (14.06.2019): 308. http://dx.doi.org/10.3390/cryst9060308.
Pełny tekst źródłaHumayun, M. A., M. A. Rashid, F. Malek, A. Yusof, F. S. Abdullah i N. B. Ahmad. "A Comparative Study of Confined Carrier Concentration of Laser Using Quantum well and Quantum Dot in Active Layer". Advanced Materials Research 701 (maj 2013): 188–91. http://dx.doi.org/10.4028/www.scientific.net/amr.701.188.
Pełny tekst źródłaHu, Yan-Ling, Yuqin Zhu, Huayu Ji, Qingyuan Luo, Ao Fu, Xin Wang, Guiyan Xu i in. "Fabrication of InxGa1−xN Nanowires on Tantalum Substrates by Vapor-Liquid-Solid Chemical Vapor Deposition". Nanomaterials 8, nr 12 (29.11.2018): 990. http://dx.doi.org/10.3390/nano8120990.
Pełny tekst źródłaRozprawy doktorskie na temat "InxGa1-xN"
Graber, Andreas. "Über die Molekularstrahlepitaxie von InxGa1-xN-Heterostrukturen und deren optische Charakterisierung". [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=959369481.
Pełny tekst źródłaCorreia, Maria do Rosário Pimenta. "Estudos de transições electrónicas e vibracionais em filmes finos de InxGa1-xN". Doctoral thesis, Universidade de Aveiro, 2005. http://hdl.handle.net/10773/2662.
Pełny tekst źródłaSemiconductors based on InxGa1-xN are widely used in light emitting devices, in a novel array of technological applications. The knowledge of the fundamental physical properties of this material has been progressing at a slower rate than the fast paced technological development. However, in order to develop devices tailored to specific needs, a deep knowledge of the physics of this system is mandatory. The main purpose of the research work was the study of the vibrational properties of the semiconductor alloy of InxGa1-xN, through the use of Raman dispersion technique. The InxGa1-xN films that were characterized were epitaxially grown by chemical vapour deposition, over a GaN/sapphire subtract. Through the combined use of different characterization techniques, optical (Raman spectroscopy, Photoluminescence and Absorption) and structural (Scanning Electron Microscopy, Rutherford Backscattering Spectrometry and X-Ray Diffraction), it was possible to successfully separate the effects of strain and composition on the frequency of the InxGa1-xN A1 (LO) phonon. Consequently, the deformation potentials, concerning the A1 (LO) phonon, were determined, and the phonon frequency dependency on the alloy composition was established. The relaxation process of the InxGa1-xN lattice, along the growth direction, was studied by the use of Raman spectroscopy on a set of samples that had suffered a chemically controlled etching. This study enabled to consolidate the interpretation of all the experimental results concerning the frequency and spectral shape of A1 (LO) phonon. Apart of the study of lattice dynamics, and since this study required that absorption and emission energies related to electronic transitions were identified, the emission at 1.88 eV, on a partially relaxed sample, was observed and characterized. Finally, a study was developed aiming to evaluate the receptivity, of the InxGa1-xN matrix, to the incorporation, by means of ionic implantation, of rareearth ions, in particular of Er3+. Therefore, luminescence at ~1.5 μm, linked to the intraionic transition of excited state (4I13/2 ) to fundamental state ( 4I15/2), was also studied. Results have shown that ion incorporation by an implantation process is not the most suitable for InxGa1-xN lattice.
Dridi, Zoulikha. "Les propriétés structurales et électroniques des alliages AlxGa1-xN, InxGa1-xN, et InxAl1-xN : étude par la méthode ab initio des ondes planes augmentées avec linéarisation et potentiel total". Caen, 2003. http://www.theses.fr/2003CAEN2076.
Pełny tekst źródłaYen-Jung, Chen. "Electron transport in InxGa1-xN films". 2007. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-2401200721431000.
Pełny tekst źródłaChen, Yen-Jung, i 陳衍榮. "Electron transport in InxGa1-xN films". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/51449056456284874172.
Pełny tekst źródła國立臺灣大學
物理研究所
95
This thesis focuses on electron transport properties of InxGa1-xN thin films. The transport measurements were performed on InxGa1-xN thin films over a wide temperature range (12 K< T < 315 K). The four independent van der Pauw measurements, each with 90∘rotation of contact configuration to measure the resistance of , were used. These samples show a tendency from semiconductor to metal with increasing x of InxGa1-xN , indicating InN electron transport properties are better than GaN. The resistivity of InN was best fitted with Block T^5 law. This supports the high In composition films can be considered as degenerate electron system in which the Fermi level is much higher than conduction band over the whole temperature range. Taking this characteristic into consideration, in this thesis the phenomenon of the electron-acoustic phonon interactions were investigated under the low temperature condition.
Shih-Kai, Lin. "Electron transport in In-rich InxGa1-xN films". 2005. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-2807200516452300.
Pełny tekst źródłaLin, Shih-Kai, i 林士凱. "Electron transport in In-rich InxGa1-xN films". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/17728421458804960752.
Pełny tekst źródła國立臺灣大學
物理研究所
93
This thesis focuses on electron transport properties in InxGa1−xN (x =1, 0.98, 0.92, 0.8, 0.7) thin films. We have performed transport measurements on InxGa1−xN thin films over a wide temperature range. We observed that within experimental error, the carrier densities are temperature independent. Besides, the resistivities, combined with the carrier densities, show a tendency of transition from metal to semiconductor with increasing Ga composition. The calculated mobility shows that for metallic like samples (InxGa1−xN with x ≥0.92), the dominant scattering mechanism is the imperfection scattering over the whole temperature range. We also showed that Bloch T5 curves fit very well the resistivities of samples InxGa1−xN with x =1, 0.98, 0.92, once again supporting that very high In composition InxGa1−xN films can be considered as degenerate electron systems in which the Fermi level is much higher than conduction-band bottom over the whole measurement range.
Chih-CiaoYang i 楊智喬. "Design, Fabrication and Characterization for InXGa1-XN-based Photovoltaics". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/55161810338819890241.
Pełny tekst źródłaLin, En-Hung, i 林恩宏. "Crystallization study of InxGa1-xN epitaxial layers on sapphire". Thesis, 2006. http://ndltd.ncl.edu.tw/handle/61374378585469849038.
Pełny tekst źródła國立臺灣海洋大學
光電科學研究所
94
We have performed the polarization modulation near-field scanning optical microscopy (PM-NSOM) measurements to investigate the correlation between crystalline and optical properties of InGaN epilayers and crystalline quality of In-rich InGaN epilayers. The PM-NSOM results show the nanoscale domain-like structures which exhibit good correspondence to the morphological images by SEM measurement. It is found the In-rich regions formed at the periphery of the hexagonal pits. These In-rich regions show good crystallinity and high recombination efficiency. We point out that the combination of PM-NSOM and NSOM-PL is a powerful tool for investigating the correspondence between the local morphology and the optical properties of the nanostructures. The crystalline properties of In-rich InGaN films with Ga concentration varying from 0% to over 30% were investigated by PM-NSOM measurements. PM-NSOM measurements showed that the crystallinity of InGaN films were strongly dependence on the Ga concentration. The average crystallinity of InGaN film was found to decrease with the increase in Ga concentration of InGaN films. On the other hand, the RMS crystallinity exhibited a different dependence on the Ga concentration for the In-Rich InGaN films. The RMS crystallinity of InGaN films first decreased with the increasing Ga concentration, reached a minimum for the InGaN film with 8% Ga concentration, and then increased again with increasing Ga concentration. Surprisingly, the RMS crystallinity of InGaN films shows the same trend in the dependence of PL intensity on the Ga concentration in InGaN films. It was concluded that for the InGaN films with different Ga content grown at the same temperature, the RMS crystallinity of the epifilms accounts for PL emission efficiency of the epilayers.
傅如彬. "Studies on the Ultrafast Carrier Dynamics of InxGa1-xN". Thesis, 1998. http://ndltd.ncl.edu.tw/handle/17820177757275753166.
Pełny tekst źródłaCzęści książek na temat "InxGa1-xN"
Bain, L. E., A. M. Hosalli, S. M. Bedair, T. Paskova i A. Ivanisevic. "Molecular Interactions on InxGa1−xN". W MEMS and Nanotechnology, Volume 5, 109–14. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00780-9_14.
Pełny tekst źródłaDahal, R., J. Y. Lin, H. X. Jiang i J. M. Zavada. "Er-Doped GaN and InxGa1-xN for Optical Communications". W Topics in Applied Physics, 115–57. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-2877-8_5.
Pełny tekst źródłaPramita, Nath, i Biswas Abhijit. "Radiation-Resilient GaN/InxGa1-xN Multi-junction Solar Cells with Varying in Contents". W Lecture Notes in Electrical Engineering, 155–67. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9154-6_16.
Pełny tekst źródłaBandyopadhyay, Dipan, Apu Mistry i JoyeetaBasu Pal. "Study on Enhancement of Optical Output of InxGa1-xN/GaN Parabolic Quantum Well LEDs, Varying Indium Compositions, and Well Widths". W Proceedings of International Conference on Industrial Instrumentation and Control, 343–49. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7011-4_34.
Pełny tekst źródłaBera, Partha Pratim, Siddhartha Panda i Dipankar Biswas. "Investigations on: How the Band Lineups, Band Offsets and Photoluminescences of an InxGa1−xN/GaN Quantum Well change with Biaxial Strain". W Physics of Semiconductor Devices, 663–65. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_169.
Pełny tekst źródłaRoutray, Soumyaranjan, i Trupti Lenka. "III-Nitride Nanowires: Future Prospective for Photovoltaic Applications". W Nanowires - Recent Progress [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.95011.
Pełny tekst źródłaPiscopiello, E., M. Catalano, M. Vittori Antisari, A. Passaseo, R. Cingolani, M. Berti i A. V. Drigo. "Structural study of the influence of different growth parameters on the quality of InxGa1-xN/GaN films grown by MOCVD". W Microscopy of Semiconducting Materials 2001, 285–88. CRC Press, 2018. http://dx.doi.org/10.1201/9781351074629-60.
Pełny tekst źródłaStreszczenia konferencji na temat "InxGa1-xN"
Alexandrov, Dimiter, i Shawn Skerget. "Tunnel optical radiation in InxGa1−xN". W INTERNATIONAL CONFERENCE ON DEFECTS IN SEMICONDUCTORS 2013: Proceedings of the 27th International Conference on Defects in Semiconductors, ICDS-2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4865658.
Pełny tekst źródłaSwain, Muralidhar, Bijay Kumar Sahoo i Sushant Kumar Sahoo. "Pyroelectric effect in InxGa1-xN/GaN heterostructure". W DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5113308.
Pełny tekst źródłaMa, Jinlong, Baoling Huang, Wu Li i Xiaobing Luo. "Intrinsic Thermal Conductivity of Wurtzite AlxGa1-xN, InxGa1-xN and InxAl1-xN From First-Principles Calculation". W ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48032.
Pełny tekst źródłaSegura-Ruiz, J., M. Gómez-Gómez, N. Garro, G. Martínez-Criado, A. Cantarero, C. Denker, J. Malindretos i A. Rizzi. "Physical properties and applications of InxGa1−xN nanowires". W 7TH INTERNATIONAL CONFERENCE ON LOW DIMENSIONAL STRUCTURES AND DEVICES: (LDSD 2011). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4878288.
Pełny tekst źródłaIslam, Md Sherajul, A. K. M. Zillur Rahman, Md A. R. Chowdhury, Md Rafiqul Islam i Ashraful G. Bhuiyan. "InxGa1-xN based multi junction concentrator solar cell". W 2008 International Conference on Electrical and Computer Engineering. IEEE, 2008. http://dx.doi.org/10.1109/icece.2008.4769276.
Pełny tekst źródłaMoon, Won Ha, Jong Pa Hong, Soo Min Lee i Dong Woohn Kim. "Theoretical study of phase stability of InxGa1-xN alloys". W SPIE Proceedings, redaktorzy Pavel Tománek, Miroslav Hrabovský, Miroslav Miler i Dagmar Senderákova. SPIE, 2006. http://dx.doi.org/10.1117/12.675674.
Pełny tekst źródłaYildiz, A., S. B. Lisesivdin, S. Acar i M. Kasap. "Mole Fraction Dependence of Mobility in InxGa1−xN Alloys". W SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733411.
Pełny tekst źródłaAlexandrov, Dimiter, Rozalina Dimitrrova, K. Scott Butcher, Marie Wintrebert-Fouquet i Richard Perks. "Field Effect Transistor on Hetero-Structure GaN/InxGa1-xN". W 2006 Canadian Conference on Electrical and Computer Engineering. IEEE, 2006. http://dx.doi.org/10.1109/ccece.2006.277693.
Pełny tekst źródłaIslam, Md Rafiqul, M. A. Rayhan, M. E. Hossain, Ashraful G. Bhuiyan, M. R. Islam i A. Yamamoto. "Projected Performance of InxGa1-xN-Based Multijunction Solar Cells". W 2006 International Conference on Electrical and Computer Engineering. IEEE, 2006. http://dx.doi.org/10.1109/icece.2006.355335.
Pełny tekst źródłaZvanut, M. E., W. R. Willoughby i D. D. Koleske. "The source of holes in p-type InxGa1-xN films". W SPIE OPTO, redaktorzy Jen-Inn Chyi, Yasushi Nanishi, Hadis Morkoç, Joachim Piprek, Euijoon Yoon i Hiroshi Fujioka. SPIE, 2013. http://dx.doi.org/10.1117/12.2002569.
Pełny tekst źródłaRaporty organizacyjne na temat "InxGa1-xN"
Liliental-Weber, Zuzanna, D. N. Zakharov, K. M. Yu, III Ager, Walukiewicz J. W., Haller W., Lu E. E., Schaff H. i W. J. Compositional Modulation in InxGa1-xN. Fort Belvoir, VA: Defense Technical Information Center, maj 2008. http://dx.doi.org/10.21236/ada513536.
Pełny tekst źródła