Gotowa bibliografia na temat „Invariant distribution of Markov processes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Invariant distribution of Markov processes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Invariant distribution of Markov processes"
Arnold, Barry C., i C. A. Robertson. "Autoregressive logistic processes". Journal of Applied Probability 26, nr 3 (wrzesień 1989): 524–31. http://dx.doi.org/10.2307/3214410.
Pełny tekst źródłaArnold, Barry C., i C. A. Robertson. "Autoregressive logistic processes". Journal of Applied Probability 26, nr 03 (wrzesień 1989): 524–31. http://dx.doi.org/10.1017/s0021900200038122.
Pełny tekst źródłaMcDonald, D. "An invariance principle for semi-Markov processes". Advances in Applied Probability 17, nr 1 (marzec 1985): 100–126. http://dx.doi.org/10.2307/1427055.
Pełny tekst źródłaMcDonald, D. "An invariance principle for semi-Markov processes". Advances in Applied Probability 17, nr 01 (marzec 1985): 100–126. http://dx.doi.org/10.1017/s0001867800014683.
Pełny tekst źródłaBarnsley, Michael F., i John H. Elton. "A new class of markov processes for image encoding". Advances in Applied Probability 20, nr 1 (marzec 1988): 14–32. http://dx.doi.org/10.2307/1427268.
Pełny tekst źródłaBarnsley, Michael F., i John H. Elton. "A new class of markov processes for image encoding". Advances in Applied Probability 20, nr 01 (marzec 1988): 14–32. http://dx.doi.org/10.1017/s0001867800017924.
Pełny tekst źródłaKalpazidou, S. "On Levy's theorem concerning positiveness of transition probabilities of Markov processes: the circuit processes case". Journal of Applied Probability 30, nr 1 (marzec 1993): 28–39. http://dx.doi.org/10.2307/3214619.
Pełny tekst źródłaKalpazidou, S. "On Levy's theorem concerning positiveness of transition probabilities of Markov processes: the circuit processes case". Journal of Applied Probability 30, nr 01 (marzec 1993): 28–39. http://dx.doi.org/10.1017/s0021900200043977.
Pełny tekst źródłaAvrachenkov, Konstantin, Alexey Piunovskiy i Yi Zhang. "Markov Processes with Restart". Journal of Applied Probability 50, nr 4 (grudzień 2013): 960–68. http://dx.doi.org/10.1239/jap/1389370093.
Pełny tekst źródłaAvrachenkov, Konstantin, Alexey Piunovskiy i Yi Zhang. "Markov Processes with Restart". Journal of Applied Probability 50, nr 04 (grudzień 2013): 960–68. http://dx.doi.org/10.1017/s0021900200013735.
Pełny tekst źródłaRozprawy doktorskie na temat "Invariant distribution of Markov processes"
Hahn, Léo. "Interacting run-and-tumble particles as piecewise deterministic Markov processes : invariant distribution and convergence". Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0084.
Pełny tekst źródłaThis thesis investigates the long-time behavior of run-and-tumble particles (RTPs), a model for bacteria's moves and interactions in out-of-equilibrium statistical mechanics, using piecewise deterministic Markov processes (PDMPs). The motivation is to improve the particle-level understanding of active phenomena, in particular motility induced phase separation (MIPS). The invariant measure for two jamming RTPs on a 1D torus is determined for general tumbling and jamming, revealing two out-of-equilibrium universality classes. Furthermore, the dependence of the mixing time on model parameters is established using coupling techniques and the continuous PDMP model is rigorously linked to a known on-lattice model. In the case of two jamming RTPs on the real line interacting through an attractive potential, the invariant measure displays qualitative differences based on model parameters, reminiscent of shape transitions and universality classes. Sharp quantitative convergence bounds are again obtained through coupling techniques. Additionally, the explicit invariant measure of three jamming RTPs on the 1D torus is computed. Finally, hypocoercive convergence results are extended to RTPs, achieving sharp \( L^2 \) convergence rates in a general setting that also covers kinetic Langevin and sampling PDMPs
Casse, Jérôme. "Automates cellulaires probabilistes et processus itérés ad libitum". Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0248/document.
Pełny tekst źródłaThe first part of this thesis is about probabilistic cellular automata (PCA) on the line and with two neighbors. For a given PCA, we look for the set of its invariant distributions. Due to reasons explained in detail in this thesis, it is nowadays unthinkable to get all of them and we concentrate our reections on the invariant Markovian distributions. We establish, first, an algebraic theorem that gives a necessary and sufficient condition for a PCA to have one or more invariant Markovian distributions when the alphabet E is finite. Then, we generalize this result to the case of a polish alphabet E once we have clarified the encountered topological difficulties. Finally, we calculate the 8-vertex model's correlation function for some parameters values using previous results.The second part of this thesis is about infinite iterations of stochastic processes. We establish the convergence of the finite dimensional distributions of the α-stable processes iterated n times, when n goes to infinite, according to parameter of stability and to drift r. Then, we describe the limit distributions. In the iterated Brownian motion case, we show that the limit distributions are linked with iterated functions system
陳冠全 i Koon-chuen Chen. "Invariant limiting shape distributions for some sequential rectangularmodels". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31238233.
Pełny tekst źródłaChen, Koon-chuen. "Invariant limiting shape distributions for some sequential rectangular models /". Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B20998934.
Pełny tekst źródłaHammer, Matthias [Verfasser]. "Ergodicity and regularity of invariant measure for branching Markov processes with immigration / Matthias Hammer". Mainz : Universitätsbibliothek Mainz, 2012. http://d-nb.info/1029390975/34.
Pełny tekst źródłaHurth, Tobias. "Invariant densities for dynamical systems with random switching". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52274.
Pełny tekst źródłaKaijser, Thomas. "Convergence in distribution for filtering processes associated to Hidden Markov Models with densities". Linköpings universitet, Matematik och tillämpad matematik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-92590.
Pełny tekst źródłaTalwar, Gaurav. "HMM-based non-intrusive speech quality and implementation of Viterbi score distribution and hiddenness based measures to improve the performance of speech recognition". Laramie, Wyo. : University of Wyoming, 2006. http://proquest.umi.com/pqdweb?did=1288654981&sid=7&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Pełny tekst źródłaGreen, David Anthony. "Departure processes from MAP/PH/1 queues". Title page, contents and abstract only, 1999. http://thesis.library.adelaide.edu.au/public/adt-SUA20020815.092144.
Pełny tekst źródłaDrton, Mathias. "Maximum likelihood estimation in Gaussian AMP chain graph models and Gaussian ancestral graph models /". Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/8952.
Pełny tekst źródłaKsiążki na temat "Invariant distribution of Markov processes"
Hernández-Lerma, O. Markov Chains and Invariant Probabilities. Basel: Birkhäuser Basel, 2003.
Znajdź pełny tekst źródłaLiao, Ming. Invariant Markov Processes Under Lie Group Actions. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92324-6.
Pełny tekst źródłaCarlsson, Niclas. Markov chains on metric spaces: Invariant measures and asymptotic behaviour. Åbo: Åbo Akademi University Press, 2005.
Znajdź pełny tekst źródłaBanjevic, Dragan. Recurrent relations for distribution of waiting time in Markov chain. [Toronto]: University of Toronto, Department of Statistics, 1994.
Znajdź pełny tekst źródłaservice), SpringerLink (Online, red. Measure-Valued Branching Markov Processes. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaOswaldo Luiz do Valle Costa. Continuous Average Control of Piecewise Deterministic Markov Processes. New York, NY: Springer New York, 2013.
Znajdź pełny tekst źródłaFeinberg, Eugene A. Handbook of Markov Decision Processes: Methods and Applications. Boston, MA: Springer US, 2002.
Znajdź pełny tekst źródłaUlrich, Rieder, i SpringerLink (Online service), red. Markov Decision Processes with Applications to Finance. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaTaira, Kazuaki. Semigroups, Boundary Value Problems and Markov Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Znajdź pełny tekst źródłaMilch, Paul R. FORECASTER, a Markovian model to analyze the distribution of Naval Officers. Monterey, Calif: Naval Postgraduate School, 1990.
Znajdź pełny tekst źródłaCzęści książek na temat "Invariant distribution of Markov processes"
Liao, Ming. "Decomposition of Markov Processes". W Invariant Markov Processes Under Lie Group Actions, 305–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92324-6_9.
Pełny tekst źródłaPollett, P. K. "Identifying Q-Processes with a Given Finite µ-Invariant Measure". W Markov Processes and Controlled Markov Chains, 41–55. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4613-0265-0_3.
Pełny tekst źródłaDubins, Lester E., Ashok P. Maitra i William D. Sudderth. "Invariant Gambling Problems and Markov Decision Processes". W International Series in Operations Research & Management Science, 409–28. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0805-2_13.
Pełny tekst źródłaDudley, R. M. "A note on Lorentz-invariant Markov processes". W Selected Works of R.M. Dudley, 109–15. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5821-1_8.
Pełny tekst źródłaCocozza-Thivent, Christiane. "Hitting Time Distribution". W Markov Renewal and Piecewise Deterministic Processes, 63–77. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70447-6_4.
Pełny tekst źródłaLiao, Ming. "Lévy Processes in Lie Groups". W Invariant Markov Processes Under Lie Group Actions, 35–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92324-6_2.
Pełny tekst źródłaLiao, Ming. "Lévy Processes in Homogeneous Spaces". W Invariant Markov Processes Under Lie Group Actions, 73–101. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92324-6_3.
Pełny tekst źródłaRong, Wu. "Some Properties of Invariant Functions of Markov Processes". W Seminar on Stochastic Processes, 1988, 239–44. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4612-3698-6_16.
Pełny tekst źródłaLiao, Ming. "Lévy Processes in Compact Lie Groups". W Invariant Markov Processes Under Lie Group Actions, 103–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92324-6_4.
Pełny tekst źródłaLiao, Ming. "Inhomogeneous Lévy Processes in Lie Groups". W Invariant Markov Processes Under Lie Group Actions, 169–237. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92324-6_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Invariant distribution of Markov processes"
Rajendiran, Shenbageshwaran, Francisco Galdos, Carissa Anne Lee, Sidra Xu, Justin Harvell, Shireen Singh, Sean M. Wu, Elizabeth A. Lipke i Selen Cremaschi. "Modeling hiPSC-to-Early Cardiomyocyte Differentiation Process using Microsimulation and Markov Chain Models". W Foundations of Computer-Aided Process Design, 344–50. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.152564.
Pełny tekst źródłaAkshay, S., Blaise Genest i Nikhil Vyas. "Distribution-based objectives for Markov Decision Processes". W LICS '18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3209108.3209185.
Pełny tekst źródłaBudgett, Stephanie, Azam Asanjarani i Heti Afimeimounga. "Visualizing Markov Processes". W Bridging the Gap: Empowering and Educating Today’s Learners in Statistics. International Association for Statistical Education, 2022. http://dx.doi.org/10.52041/iase.icots11.t10f3.
Pełny tekst źródłaFracasso, Paulo Thiago, Frank Stephenson Barnes i Anna Helena Reali Costa. "Energy cost optimization in water distribution systems using Markov Decision Processes". W 2013 International Green Computing Conference (IGCC). IEEE, 2013. http://dx.doi.org/10.1109/igcc.2013.6604516.
Pełny tekst źródłaIsmail, Muhammad Ali. "Multi-core processor based parallel implementation for finding distribution vectors in Markov processes". W 2013 18th International Conference on Digital Signal Processing (DSP). IEEE, 2013. http://dx.doi.org/10.1109/siecpc.2013.6550997.
Pełny tekst źródłaTsukamoto, Hiroki, Song Bian i Takashi Sato. "Statistical Device Modeling with Arbitrary Model-Parameter Distribution via Markov Chain Monte Carlo". W 2021 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2021. http://dx.doi.org/10.1109/sispad54002.2021.9592558.
Pełny tekst źródłaLee, Seungchul, Lin Li i Jun Ni. "Modeling of Degradation Processes to Obtain an Optimal Solution for Maintenance and Performance". W ASME 2009 International Manufacturing Science and Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/msec2009-84166.
Pełny tekst źródłaSathe, Sumedh, Chinmay Samak, Tanmay Samak, Ajinkya Joglekar, Shyam Ranganathan i Venkat N. Krovi. "Data Driven Vehicle Dynamics System Identification Using Gaussian Processes". W WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2022.
Pełny tekst źródłaVelasquez, Alvaro. "Steady-State Policy Synthesis for Verifiable Control". W Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/784.
Pełny tekst źródłaHaschka, Markus, i Volker Krebs. "A Direct Approximation of Cole-Cole-Systems for Time-Domain Analysis". W ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84579.
Pełny tekst źródłaRaporty organizacyjne na temat "Invariant distribution of Markov processes"
Stettner, Lukasz. On the Existence and Uniqueness of Invariant Measure for Continuous Time Markov Processes,. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1986. http://dx.doi.org/10.21236/ada174758.
Pełny tekst źródła