Artykuły w czasopismach na temat „Interphase”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Interphase”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ghasem Zadeh Khorasani, Media, Anna-Maria Elert, Vasile-Dan Hodoroaba, Leonardo Agudo Jácome, Korinna Altmann, Dorothee Silbernagl i Heinz Sturm. "Short- and Long-Range Mechanical and Chemical Interphases Caused by Interaction of Boehmite (γ-AlOOH) with Anhydride-Cured Epoxy Resins". Nanomaterials 9, nr 6 (4.06.2019): 853. http://dx.doi.org/10.3390/nano9060853.
Pełny tekst źródłaLee, Sang Jin, Chung Hyo Lee i Jong Hee Hwang. "Toughening of Ceramic Composite Designed by Silica-Based Transformation Weakening Interphases". Key Engineering Materials 287 (czerwiec 2005): 358–66. http://dx.doi.org/10.4028/www.scientific.net/kem.287.358.
Pełny tekst źródłaWang, Meng, i Xiaochen Hang. "Finite Element Analysis of Residual Stress Distribution Patterns of Prestressed Composites Considering Interphases". Materials 16, nr 4 (5.02.2023): 1345. http://dx.doi.org/10.3390/ma16041345.
Pełny tekst źródłaFerrara, Chiara, Riccardo Ruffo i Piercarlo Mustarelli. "The Importance of Interphases in Energy Storage Devices: Methods and Strategies to Investigate and Control Interfacial Processes". Physchem 1, nr 1 (13.04.2021): 26–44. http://dx.doi.org/10.3390/physchem1010003.
Pełny tekst źródłaBian, L. C., W. Liu i J. Pan. "Probability of Debonding and Effective Elastic Properties of Particle-Reinforced Composites". Journal of Mechanics 33, nr 6 (24.01.2017): 789–96. http://dx.doi.org/10.1017/jmech.2017.4.
Pełny tekst źródłaLee, Sang Jin, i Sang Ho Lee. "High-Toughening Alumina Composites Weakened by Metastable Hexacelsian Interphases". Key Engineering Materials 345-346 (sierpień 2007): 721–24. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.721.
Pełny tekst źródłaYoshida, Katsumi, Hiroyuki Akimoto, Akihiro Yamauchi, Toyohiko Yano, Masaki Kotani i Toshio Ogasawara. "Interface Formation of Unidirectional SiCf/SiC Composites by Electrophoretic Deposition Method". Key Engineering Materials 617 (czerwiec 2014): 213–16. http://dx.doi.org/10.4028/www.scientific.net/kem.617.213.
Pełny tekst źródłaEl Khoury, Diana, Richard Arinero, Jean-Charles Laurentie, Mikhaël Bechelany, Michel Ramonda i Jérôme Castellon. "Electrostatic force microscopy for the accurate characterization of interphases in nanocomposites". Beilstein Journal of Nanotechnology 9 (7.12.2018): 2999–3012. http://dx.doi.org/10.3762/bjnano.9.279.
Pełny tekst źródłaSancaktar, E., i P. Zhang. "Nonlinear Viscoelastic Modelling of the Fiber-Matrix Interphase in Composite Materials". Journal of Mechanical Design 112, nr 4 (1.12.1990): 605–19. http://dx.doi.org/10.1115/1.2912653.
Pełny tekst źródłaSingh, Manohar, i Jeewan Chandra Pandey. "Probing thermal conductivity of interphase in epoxy alumina nanocomposites". Polymers and Polymer Composites 30 (styczeń 2022): 096739112210774. http://dx.doi.org/10.1177/09673911221077489.
Pełny tekst źródłaLiu, Y. J., N. Xu i J. F. Luo. "Modeling of Interphases in Fiber-Reinforced Composites Under Transverse Loading Using the Boundary Element Method". Journal of Applied Mechanics 67, nr 1 (23.09.1999): 41–49. http://dx.doi.org/10.1115/1.321150.
Pełny tekst źródłaHan, Yupei, Ajay Piriya Vijaya Kumar Saroja, Henry R. Tinker i Yang Xu. "Interphases in the electrodes of potassium ion batteries". Journal of Physics: Materials 5, nr 2 (29.03.2022): 022001. http://dx.doi.org/10.1088/2515-7639/ac5dce.
Pełny tekst źródłaHu, An Jun, i Yi Nuo Li. "A Muti-Functional Artificial Interphase for Dendrite-Free Lithium Deposition". Key Engineering Materials 939 (25.01.2023): 129–33. http://dx.doi.org/10.4028/p-9s9iqu.
Pełny tekst źródłaBender, B. A., i T. L. Jessen. "A comparison of the interphase development and mechanical properties of Nicalon and Tyranno SiC fiber-reinforced ZrTiO4 matrix composites". Journal of Materials Research 9, nr 10 (październik 1994): 2670–76. http://dx.doi.org/10.1557/jmr.1994.2670.
Pełny tekst źródłaEl Khoury, D., V. Fedorenko, J. Castellon, M. Bechelany, J. C. Laurentie, S. Balme, M. Fréchette, M. Ramonda i R. Arinero. "Characterization of Dielectric Nanocomposites with Electrostatic Force Microscopy". Scanning 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/4198519.
Pełny tekst źródłaKhanna, Sanjeev K., P. Ranganathan, S. B. Yedla, R. M. Winter i K. Paruchuri. "Investigation of Nanomechanical Properties of the Interphase in a Glass Fiber Reinforced Polyester Composite Using Nanoindentation". Journal of Engineering Materials and Technology 125, nr 2 (1.04.2003): 90–96. http://dx.doi.org/10.1115/1.1543966.
Pełny tekst źródłaBenveniste, Y., i G. Baum. "An interface model of a graded three-dimensional anisotropic curved interphase". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463, nr 2078 (4.10.2006): 419–34. http://dx.doi.org/10.1098/rspa.2006.1777.
Pełny tekst źródłaZanjani, Jamal Seyyed Monfared, i Ismet Baran. "Co-Bonded Hybrid Thermoplastic-Thermoset Composite Interphase: Process-Microstructure-Property Correlation". Materials 14, nr 2 (8.01.2021): 291. http://dx.doi.org/10.3390/ma14020291.
Pełny tekst źródłaZanjani, Jamal Seyyed Monfared, i Ismet Baran. "Co-Bonded Hybrid Thermoplastic-Thermoset Composite Interphase: Process-Microstructure-Property Correlation". Materials 14, nr 2 (8.01.2021): 291. http://dx.doi.org/10.3390/ma14020291.
Pełny tekst źródłaYang, Yang, Qi He, Hong-Liang Dai, Jian Pang, Liang Yang, Xing-Quan Li, Yan-Ni Rao i Ting Dai. "Micromechanics-based analyses of short fiber-reinforced composites with functionally graded interphases". Journal of Composite Materials 54, nr 8 (2.09.2019): 1031–48. http://dx.doi.org/10.1177/0021998319873033.
Pełny tekst źródłaYang, Xiao-Qing. "(Invited) An Inorganic-Rich but Low Lif Content Interphase for Fast Charging and Long Cycle Life Lithium Metal Batteries As Well As Evolution and Interplay of Lithium Metal Interphase Components". ECS Meeting Abstracts MA2024-02, nr 2 (22.11.2024): 286. https://doi.org/10.1149/ma2024-022286mtgabs.
Pełny tekst źródłaHernández-Díaz, David, Ricardo Villar-Ribera, Fernando Julián, Quim Tarrés, Francesc X. Espinach i Marc Delgado-Aguilar. "Topography of the Interfacial Shear Strength and the Mean Intrinsic Tensile Strength of Hemp Fibers as a Reinforcement of Polypropylene". Materials 13, nr 4 (24.02.2020): 1012. http://dx.doi.org/10.3390/ma13041012.
Pełny tekst źródłaVallat, M. F., S. Giami i A. Coupard. "Elastomer-Elastomer Autohesion-Interphase Gradient of Elastic Modulus". Rubber Chemistry and Technology 72, nr 4 (1.09.1999): 701–11. http://dx.doi.org/10.5254/1.3538827.
Pełny tekst źródłaVattathurvalappil, Suhail Hyder, Mahmoodul Haq i Saratchandra Kundurthi. "Hybrid nanocomposites—An efficient representative volume element formulation with interface properties". Polymers and Polymer Composites 30 (styczeń 2022): 096739112210846. http://dx.doi.org/10.1177/09673911221084651.
Pełny tekst źródłaLopez, Jeffrey. "Stabilizing Lithium Metal Anode and Conversion Cathode Interphases for High Energy Density Batteries". ECS Meeting Abstracts MA2024-02, nr 7 (22.11.2024): 801. https://doi.org/10.1149/ma2024-027801mtgabs.
Pełny tekst źródłaKo, Youngmin, Michael Baird i Brett Helms. "Interphase Design by Localized Super-Concentrated Electrolyte for High-Voltage and High-Power Lithium Metal Batteries". ECS Meeting Abstracts MA2023-01, nr 2 (28.08.2023): 642. http://dx.doi.org/10.1149/ma2023-012642mtgabs.
Pełny tekst źródłaGeiss, Paul Ludwig, i Melanie Schumann. "Polymer Interphases in Adhesively Bonded Joints – Origin, Properties and Methods for Characterization". Materials Science Forum 941 (grudzień 2018): 2249–54. http://dx.doi.org/10.4028/www.scientific.net/msf.941.2249.
Pełny tekst źródłaBorges, Catarina S. P., Eduardo A. S. Marques, Ricardo J. C. Carbas, Alireza Akhavan-Safar, Christoph Ueffing, Philipp Weißgraeber i Lucas F. M. da Silva. "Effect of the Interface/Interphase on the Water Ingress Properties of Joints with PBT-GF30 and Aluminum Substrates Using Silicone Adhesive". Polymers 15, nr 4 (4.02.2023): 788. http://dx.doi.org/10.3390/polym15040788.
Pełny tekst źródłaBaumgartner, Adi, Christy Ferlatte Hartshorne, Aris A. Polyzos, Heinz-Ulrich G. Weier, Jingly Fung Weier i Ben O’Brien. "Full Karyotype Interphase Cell Analysis". Journal of Histochemistry & Cytochemistry 66, nr 8 (19.04.2018): 595–606. http://dx.doi.org/10.1369/0022155418771613.
Pełny tekst źródłaISHIDA, HATSUO. "Interphase Engineering". Sen'i Gakkaishi 44, nr 2 (1988): P56—P60. http://dx.doi.org/10.2115/fiber.44.2_p56.
Pełny tekst źródłaHerrington, C. S., i J. O. McGee. "Interphase cytogenetics". Neurochemical Research 15, nr 4 (kwiecień 1990): 467–74. http://dx.doi.org/10.1007/bf00969934.
Pełny tekst źródłaRosy i Malachi Noked. "Multifunctional interphase". Nature Energy 3, nr 4 (5.03.2018): 253–54. http://dx.doi.org/10.1038/s41560-018-0114-3.
Pełny tekst źródłaStanley, Michael W. "Interphase Cytogenetics". Advances in Anatomic Pathology 2, nr 3 (maj 1995): 176–80. http://dx.doi.org/10.1097/00125480-199505000-00006.
Pełny tekst źródłaKim, Jung-Hyun. "(Invited) Strategies for Enhancing the Stability of the Electrode-Electrolyte Interphase in Sulfide-Based Solid-State Batteries". ECS Meeting Abstracts MA2023-02, nr 1 (22.12.2023): 70. http://dx.doi.org/10.1149/ma2023-02170mtgabs.
Pełny tekst źródłaLiu, Ziqi, i Jeffrey Lopez. "Operando FTIR Characterization of Interphases from Organosulfur Electrolytes in High Voltage Lithium-Ion Batteries". ECS Meeting Abstracts MA2024-02, nr 7 (22.11.2024): 943. https://doi.org/10.1149/ma2024-027943mtgabs.
Pełny tekst źródłaChen, Hsun-Yi, i Cindy Rusly. "Enhancing Performance of Lithium Sulfur Batteries with Electrode-Electrolyte Interphase Engineering". ECS Meeting Abstracts MA2024-02, nr 7 (22.11.2024): 1044. https://doi.org/10.1149/ma2024-0271044mtgabs.
Pełny tekst źródłaMoradienayat, Monireh, Dania Olmos i Javier González-Benito. "Airbrushed Polysulfone (PSF)/Hydroxyapatite (HA) Nanocomposites: Effect of the Presence of Nanoparticles on Mechanical Behavior". Polymers 14, nr 4 (15.02.2022): 753. http://dx.doi.org/10.3390/polym14040753.
Pełny tekst źródłaTepavcevic, Sanja, Michael Counihan, Jungkuk Lee, Priyadarshini Mirmira, Pallab Barai, Meghan Burns, Chibueze Amanchukwu, Venkat Srinivasan i Yuepeng Zhang. "Advancing Li-Transport in Composite Polymer Electrolytes with Functionalized LLZO Nanoparticles". ECS Meeting Abstracts MA2024-02, nr 8 (22.11.2024): 1145. https://doi.org/10.1149/ma2024-0281145mtgabs.
Pełny tekst źródłaSaber-Samandari, Saeed, i Akbar Afaghi Khatibi. "The Effect of Interphase on the Elastic Modulus of Polymer Based Nanocomposites". Key Engineering Materials 312 (czerwiec 2006): 199–204. http://dx.doi.org/10.4028/www.scientific.net/kem.312.199.
Pełny tekst źródłaWang, Jian Fen, Matthias Weiling, Felix Pfeiffer i Masoud Baghernejad. "Unveiling the Interfacial Composition of Li-Metal | Polymer Electrolytes during Lithium Plating-Stripping Employing Operando ATR-FTIR Spectroscopy". ECS Meeting Abstracts MA2024-02, nr 8 (22.11.2024): 1135. https://doi.org/10.1149/ma2024-0281135mtgabs.
Pełny tekst źródłaMikata, Yozo. "Stress Fields in a Continuous Fiber Composite With a Variable Interphase Under Thermo-Mechanical Loadings". Journal of Engineering Materials and Technology 116, nr 3 (1.07.1994): 367–77. http://dx.doi.org/10.1115/1.2904300.
Pełny tekst źródłaZhu, Da Sheng, i Bo Qin Gu. "Micromechanical Analysis of Single-Fiber Pull-Out Test of Fiber-Reinforced Viscoelastic Matrix Composites". Advanced Materials Research 399-401 (listopad 2011): 556–60. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.556.
Pełny tekst źródłaChan, I. Tung, Tung Yang Chen i Min Sen Chiu. "The Influence of Torsional-Rigidity Bounds for Composite Shafts with Specific Cross-Sections". Key Engineering Materials 462-463 (styczeń 2011): 674–79. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.674.
Pełny tekst źródłaAchenbach, J. D., i H. Zhu. "Effect of Interphases on Micro and Macromechanical Behavior of Hexagonal-Array Fiber Composites". Journal of Applied Mechanics 57, nr 4 (1.12.1990): 956–63. http://dx.doi.org/10.1115/1.2897667.
Pełny tekst źródłaZhang, Changjun. "Hydroxyl-enabled interphase". Nature Energy 7, nr 7 (lipiec 2022): 566. http://dx.doi.org/10.1038/s41560-022-01090-x.
Pełny tekst źródłaLeBrasseur, Nicole. "Migrating interphase DNA". Journal of Cell Biology 173, nr 3 (1.05.2006): 317a. http://dx.doi.org/10.1083/jcb.1733rr1.
Pełny tekst źródłaFreunberger, Stefan A. "Interphase identity crisis". Nature Chemistry 11, nr 9 (19.08.2019): 761–63. http://dx.doi.org/10.1038/s41557-019-0311-0.
Pełny tekst źródłaFink, B. K., i R. L. McCullough. "Interphase research issues". Composites Part A: Applied Science and Manufacturing 30, nr 1 (styczeń 1999): 1–2. http://dx.doi.org/10.1016/s1359-835x(98)00118-3.
Pełny tekst źródłaAshworth, Claire. "Interrogating the interphase". Nature Reviews Materials 3, nr 5 (24.04.2018): 1. http://dx.doi.org/10.1038/s41578-018-0013-z.
Pełny tekst źródłaZhang, Changjun. "Repairing the interphase". Nature Energy 5, nr 2 (luty 2020): 115. http://dx.doi.org/10.1038/s41560-020-0568-y.
Pełny tekst źródła