Gotowa bibliografia na temat „Interphase”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Interphase”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Interphase"
Ghasem Zadeh Khorasani, Media, Anna-Maria Elert, Vasile-Dan Hodoroaba, Leonardo Agudo Jácome, Korinna Altmann, Dorothee Silbernagl i Heinz Sturm. "Short- and Long-Range Mechanical and Chemical Interphases Caused by Interaction of Boehmite (γ-AlOOH) with Anhydride-Cured Epoxy Resins". Nanomaterials 9, nr 6 (4.06.2019): 853. http://dx.doi.org/10.3390/nano9060853.
Pełny tekst źródłaLee, Sang Jin, Chung Hyo Lee i Jong Hee Hwang. "Toughening of Ceramic Composite Designed by Silica-Based Transformation Weakening Interphases". Key Engineering Materials 287 (czerwiec 2005): 358–66. http://dx.doi.org/10.4028/www.scientific.net/kem.287.358.
Pełny tekst źródłaWang, Meng, i Xiaochen Hang. "Finite Element Analysis of Residual Stress Distribution Patterns of Prestressed Composites Considering Interphases". Materials 16, nr 4 (5.02.2023): 1345. http://dx.doi.org/10.3390/ma16041345.
Pełny tekst źródłaFerrara, Chiara, Riccardo Ruffo i Piercarlo Mustarelli. "The Importance of Interphases in Energy Storage Devices: Methods and Strategies to Investigate and Control Interfacial Processes". Physchem 1, nr 1 (13.04.2021): 26–44. http://dx.doi.org/10.3390/physchem1010003.
Pełny tekst źródłaBian, L. C., W. Liu i J. Pan. "Probability of Debonding and Effective Elastic Properties of Particle-Reinforced Composites". Journal of Mechanics 33, nr 6 (24.01.2017): 789–96. http://dx.doi.org/10.1017/jmech.2017.4.
Pełny tekst źródłaLee, Sang Jin, i Sang Ho Lee. "High-Toughening Alumina Composites Weakened by Metastable Hexacelsian Interphases". Key Engineering Materials 345-346 (sierpień 2007): 721–24. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.721.
Pełny tekst źródłaYoshida, Katsumi, Hiroyuki Akimoto, Akihiro Yamauchi, Toyohiko Yano, Masaki Kotani i Toshio Ogasawara. "Interface Formation of Unidirectional SiCf/SiC Composites by Electrophoretic Deposition Method". Key Engineering Materials 617 (czerwiec 2014): 213–16. http://dx.doi.org/10.4028/www.scientific.net/kem.617.213.
Pełny tekst źródłaEl Khoury, Diana, Richard Arinero, Jean-Charles Laurentie, Mikhaël Bechelany, Michel Ramonda i Jérôme Castellon. "Electrostatic force microscopy for the accurate characterization of interphases in nanocomposites". Beilstein Journal of Nanotechnology 9 (7.12.2018): 2999–3012. http://dx.doi.org/10.3762/bjnano.9.279.
Pełny tekst źródłaSancaktar, E., i P. Zhang. "Nonlinear Viscoelastic Modelling of the Fiber-Matrix Interphase in Composite Materials". Journal of Mechanical Design 112, nr 4 (1.12.1990): 605–19. http://dx.doi.org/10.1115/1.2912653.
Pełny tekst źródłaSingh, Manohar, i Jeewan Chandra Pandey. "Probing thermal conductivity of interphase in epoxy alumina nanocomposites". Polymers and Polymer Composites 30 (styczeń 2022): 096739112210774. http://dx.doi.org/10.1177/09673911221077489.
Pełny tekst źródłaRozprawy doktorskie na temat "Interphase"
Zhang, Jie. "Multifunctional composite interphase". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-88763.
Pełny tekst źródłaAbdennur, Nezar(Nezar Alexander). "Unfolding genome organization in interphase". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122537.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 147-166).
Genomic contact frequency maps obtained from high throughput chromosome conformation capture technologies have revealed several organizing patterns of mammalian interphase chromosomes, including self-interacting topologically associating domains (TADs) which are believed to function as coherent gene regulatory neighborhoods. However, the mechanisms driving these patterns are still unknown. In this thesis, I describe and apply computational methods that test the predictions of a recently proposed loop extrusion model in the context of experimental perturbations of its key molecular players. In the first project I introduce a new data model, file format, and supporting software package to cope with the challenges of the increasing size and resolution of Hi-C datasets, including a parallel and scalable matrix balancing implementation.
In the second project, I show that depletion of the Structural Maintenance of Chromosomes (SMC) complex, cohesin, in non-cycling mouse liver cells completely eliminates the appearance of TADs in Hi-C maps while preserving genome compartmentalization. In the third project, I demonstrate that depletion of a closely related SMC complex, condensin II, which plays a major role in mitotic chromosome condensation but is also found in the nucleus in interphase, has no impact on gene expression or the maintenance of genome organization in non-dividing cells. In the final project, I compile further evidence for loop extrusion in interphase by employing a combination of polymer simulations and meta-analysis of several Hi-C studies that performed targeted perturbations to modulate the presence of cohesin and the insulator protein, CTCF, on chromatin.
Together, these projects show that rather than being folded in a hierarchical fashion, mammalian genomes in interphase are organized by at least two distinct and antagonistic processes: global compartmental segregation dependent on epigenetic state, and local compaction dependent on cohesin. The latter process is likely to be the dynamic extrusion of chromatin loops driven by a yet-to-be-characterized motor activity of cohesin complexes and limited by DNA-bound CTCF extrusion barriers.
by Nezar Abdennur.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Computational and Systems Biology Program
Didier, Yves. "In-situ interphase formation in polymer composites". Thesis, University of Sheffield, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434548.
Pełny tekst źródłaPomes-Hadda, Mickael. "Caractérisations et performances des assemblages collés époxyde-amine/aluminium". Thesis, Toulouse, INPT, 2015. http://www.theses.fr/2015INPT0067/document.
Pełny tekst źródłaCharacterization and evaluation of physical, chemical, physico-chemical and mechanical properties are an important point in the comprehension of the behavior of bonded polymer/substrate assemblies. Dielectric spectroscopy is an effective method of characterization to study molecular dynamics, and also allow in situ monitoring of bonded joints. Mathematical modeling of experimental results by the method of interval analysis overcomes many shortcomings of commonly used software (experimental error taken into account, accept or reject a model ...). It has been shown that in the presence of a metal substrate, a competition was held between the polymerization reaction and the reactions between the monomers and metal substrates, leading to an interphase (i.e. non-zero thickness of interface) having properties different than these of the bulk. These properties influence the adhesion between the epoxy-amine polymer and the aluminum substrate. Adhesion will be characterized by a standardized test and related to the properties of the interphase by various techniques. The aging of DGEBA-anime/aluminum system have been done during this study. During the aging, destructive and non-destructive tests were carried out in order to have a follow-up on the properties of interfaces and interphases of these bonded joints. The results were correlated in order to be able to use an in situ non-destructive testing to prevent the rupture at the interphase/interface between the adhesive and the substrate
Chung, Jaeun. "Nanoscale characterization of epoxy interphase on copper microstructures". [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=979725127.
Pełny tekst źródłaOostenbrugge, Robert Jan van. "Interphase cytogenetics in the cytodiagnosis of leptomeningeal metastases". [Maastricht : Maastricht : Universiteit Maastricht] ; University Library, Maastricht University [Host], 1999. http://arno.unimaas.nl/show.cgi?fid=6838.
Pełny tekst źródłaFilippo, Miriam Di. "Analysis of the chromatin structure in interphase nuclei". Thesis, Open University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489905.
Pełny tekst źródłaKinloch, Stephen Adam. "Interphase modification in TATB filled polymer bonded explosives". Thesis, Cranfield University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303329.
Pełny tekst źródłaCimaszewski, Steven A. (Steven Andrew). "Statistical analysis of fiber composite interphase inverse problem". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/35411.
Pełny tekst źródłaAshirgade, Akshay A. "Mechanistic study of the rubber-brass adhesion interphase". University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1291145141.
Pełny tekst źródłaKsiążki na temat "Interphase"
Yurov, Yuri B., Svetlana G. Vorsanova i Ivan Y. Iourov, red. Human Interphase Chromosomes. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6558-4.
Pełny tekst źródłaIourov, Ivan, Svetlana Vorsanova i Yuri Yurov, red. Human Interphase Chromosomes. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62532-0.
Pełny tekst źródłaNetravali, Anil N., i K. L. Mittal, red. Interface/Interphase in Polymer Nanocomposites. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119185093.
Pełny tekst źródłaB, Balbuena Perla, i Wang Yixuan, red. Lithium-ion batteries: Solid-electrolyte interphase. London: Imperial College Press, 2004.
Znajdź pełny tekst źródłaKaur, Inderjeet. Fundamentals of grain and interphase boundary diffusion. Wyd. 3. Chichester: John Wiley, 1995.
Znajdź pełny tekst źródłaKaur, Inderjeet. Fundamentals of grain and interphase boundary diffusion. Stuttgart: ZieglerPress, 1988.
Znajdź pełny tekst źródłaKaur, Inderjeet. Fundamentals of grain and interphase boundary diffusion. Wyd. 2. Stuttgart: Max-Planck-Institut für Metallforschung and Institut für Metallkunde, 1989.
Znajdź pełny tekst źródłaKaur, Inderjeet. Handbook of grain and interphase boundary diffusion data. Stuttgart: Ziegler Press, 1989.
Znajdź pełny tekst źródłaKaur, Inderjeet. Handbook of grain and interphase boundary diffusion data. Stuttgart: Ziegler Press, 1989.
Znajdź pełny tekst źródłaKaur, Inderjeet. Handbook of grain and interphase boundary diffusion data. Stuttgart: Ziegler Press, 1989.
Znajdź pełny tekst źródłaCzęści książek na temat "Interphase"
Arnemann, J. "Interphase-FiSH". W Springer Reference Medizin, 1272. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_3510.
Pełny tekst źródłaRied, Thomas. "Interphase Cytogenetics". W Encyclopedia of Cancer, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_3108-3.
Pełny tekst źródłaArnemann, J. "Interphase-FiSH". W Lexikon der Medizinischen Laboratoriumsdiagnostik, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-49054-9_3510-1.
Pełny tekst źródłaRied, Thomas. "Interphase Cytogenetics". W Encyclopedia of Cancer, 2319–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-46875-3_3108.
Pełny tekst źródłaPilato, Louis A., i Michael J. Michno. "Composite Interphase". W Advanced Composite Materials, 108–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-35356-1_5.
Pełny tekst źródłaRied, Thomas. "Interphase Cytogenetics". W Encyclopedia of Cancer, 1897–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16483-5_3108.
Pełny tekst źródłaPapailiou, Konstantin, i Frank Schmuck. "Interphase Spacers". W Silicone Composite Insulators, 127–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-15320-4_5.
Pełny tekst źródłaForwood, C. T., i L. M. Clarebrough. "Interphase Interfaces". W Electron Microscopy of Interfaces in Metals and Alloys, 361–407. Boca Raton: Routledge, 2021. http://dx.doi.org/10.1201/9780203758656-7.
Pełny tekst źródłaIourov, Ivan Y., Svetlana G. Vorsanova i Yuri B. Yurov. "Human Interphase Cytogenomics". W Human Interphase Chromosomes, 1–10. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62532-0_1.
Pełny tekst źródłaYurov, Yuri B., Svetlana G. Vorsanova i Ivan Y. Iourov. "Introduction to Interphase Molecular Cytogenetics". W Human Interphase Chromosomes, 1–8. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6558-4_1.
Pełny tekst źródłaStreszczenia konferencji na temat "Interphase"
Subramanian, Nithya, Ashwin Rai i Aditi Chattopadhyay. "Characterization of Three-Constituent Interface in CNT-Embedded Nanocomposites". W ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65691.
Pełny tekst źródłaRobertson, Taylor, Xiao Huang i Rick Kearsey. "Multilayered Fibre-Matrix Interphases Derived From the Electrophoretic Deposition of Ceramic Nano-Powders". W ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-81166.
Pełny tekst źródłaYekani Fard, Masoud, i Joel Swanstrom. "Experimental Approach and Conventional Analytical Techniques to the Carbon Nanotube Network Interphase in 3-Phase Polymer Matrix Nano-Composites". W ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70589.
Pełny tekst źródłaАйзенштадт, А. М., Ю. В. Соколова, Т. А. Дроздюк i М. А. Авдушева. "INTERPHASE OF BUILDING COMPOSITIONS". W «АКТУАЛЬНЫЕ ВОПРОСЫ СОВРЕМЕННОЙ НАУКИ: ТЕОРИЯ, ТЕХНОЛОГИЯ, МЕТОДОЛОГИЯ И ПРАКТИКА». Международная научно-практическая онлайн-конференция, приуроченная к 60-ти летию член-корреспондента Академии наук ЧР, доктора технических наук, профессора Сайд-Альви Юсуповича Муртазаева. Crossref, 2021. http://dx.doi.org/10.34708/gstou.conf..2021.78.24.008.
Pełny tekst źródłaDaily, Connor S., Michael R. Kessler, Xaoli Tan i Nicola Bowler. "On the nanoparticle interphase". W 2012 IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP 2012). IEEE, 2012. http://dx.doi.org/10.1109/ceidp.2012.6378831.
Pełny tekst źródłaLemay, J., P. Berube, M. M. Brault, M. Gvozdanovic, M. I. Henderson, M. R. Graham, G. E. Smith i in. "The Plattsburgh Interphase Power Controller". W 1999 IEEE Transmission and Distribution Conference (Cat. No. 99CH36333). IEEE, 1999. http://dx.doi.org/10.1109/tdc.1999.756127.
Pełny tekst źródłaSharma, Asha, Sumit Basu i Nandini Gupta. "Estimation of Interphase Permittivity and Interphase Thickness in Epoxy based Nanocomposites using Electrostatic Force Microscopy". W 2019 IEEE Electrical Insulation Conference (EIC). IEEE, 2019. http://dx.doi.org/10.1109/eic43217.2019.9046552.
Pełny tekst źródłaSuryawanshi, Vinod B., Mahdi Ghazizadeh i Ajit D. Kelkar. "Mechanical Properties of Silane Treated Glass Nanofiber-Epoxy Resin Interphase Using Molecular Dynamics Simulation". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53602.
Pełny tekst źródłaKoshino, Tetsushi, Mohamed S. Aly-Hassan i Hiroyuki Hamada. "Jute Fiber Reinforced Polymeric Composites With Flexible Interphase". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87775.
Pełny tekst źródłaSeidel, Gary D., Kelli L. Boehringer i Dimitris C. Lagoudas. "Analysis of Clustering and Interphase Region Effects on the Electrical Conductivity of Carbon Nanotube-Polymer Nanocomposites via Computational Micromechanics". W ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-670.
Pełny tekst źródłaRaporty organizacyjne na temat "Interphase"
Wynblatt, P. Equilibrium composition of interphase boundaries. Office of Scientific and Technical Information (OSTI), styczeń 1990. http://dx.doi.org/10.2172/6390291.
Pełny tekst źródłaWynblatt, P. [Equilibrium composition of interphase boundaries]. Final report. Office of Scientific and Technical Information (OSTI), październik 1998. http://dx.doi.org/10.2172/362510.
Pełny tekst źródłaMarshall, David B., i Janek B. Davis. Interphase Debonding in High Temperature Ceramic Composites. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2001. http://dx.doi.org/10.21236/ada389369.
Pełny tekst źródłaRellick, G. S., R. J. Zaldivar i P. M. Adams. Fiber-Matrix Interphase Development in Carbon/Carbon Composites. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1998. http://dx.doi.org/10.21236/ada341620.
Pełny tekst źródłaZimmerman, Jonathan A., Bryan Matthew Wong, Reese E. Jones, Jeremy Alan Templeton i Jonathan Lee. Enhanced molecular dynamics for simulating porous interphase layers in batteries. Office of Scientific and Technical Information (OSTI), październik 2009. http://dx.doi.org/10.2172/972859.
Pełny tekst źródłaTrask, B. Chromosome mapping by FISH to metaphase and interphase nuclei. Final report. Office of Scientific and Technical Information (OSTI), sierpień 1997. http://dx.doi.org/10.2172/510363.
Pełny tekst źródłaRiemke, R. Junction-based interphase drag and vertical stratification modifications for RELAP5/MOD3. Office of Scientific and Technical Information (OSTI), czerwiec 1989. http://dx.doi.org/10.2172/7049824.
Pełny tekst źródłaJon J. Kellar, William M. Cross i Lidvin Kjerengtroen. Final Report: Interphase Analysis and Control in Fiber Reinforced Thermoplastic Composites. Office of Scientific and Technical Information (OSTI), marzec 2009. http://dx.doi.org/10.2172/949227.
Pełny tekst źródłaDauskardt, Reinhold H., Mark Oliver, Anay Kamer, Jeffrey Yang i Linying Wang. Interphase Thermomechanical Reliability and Optimization for High-Performance Ti Metal Laminates. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2011. http://dx.doi.org/10.21236/ada563164.
Pełny tekst źródłaJoukov, Vladimir. The Role of BRCA1/BARD1 Heterodimers in the Mitosis-Interphase Transition. Fort Belvoir, VA: Defense Technical Information Center, maj 2007. http://dx.doi.org/10.21236/ada471801.
Pełny tekst źródła