Spis treści
Gotowa bibliografia na temat „Interférométrie non-linéaire”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Interférométrie non-linéaire”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Rozprawy doktorskie na temat "Interférométrie non-linéaire"
Sacchet, Delphine. "Tomographie par cohérence optique plein champ linéaire et non linéaire". Phd thesis, Université Paris Sud - Paris XI, 2010. http://tel.archives-ouvertes.fr/tel-00519355.
Pełny tekst źródłaBousquet, Elsa. "Optimisation non linéaire et application au réglage d'un réseau de télescopes". Limoges, 2009. https://aurore.unilim.fr/theses/nxfile/default/2d9a9c28-505a-4ed2-847a-8590551efa79/blobholder:0/2009LIMO4048.pdf.
Pełny tekst źródłaWe describe an application of nonlinear optimization in interferometric optical astronomy. The aim is to find the relative positions of the output pupils and the modulus of the beams through each pupil of a linear array of telescopes in order to design an instrument capable of imaging exoplanets. The problem is modelized under the form of a nonlinear minimization problem. Numerical experiments and theorical results are reported. We analyze too the behaviour of the Newton method applied to a sequence of perturbed optimality systems that follow from the quadra- tic penalty approach. We show that the usual requirement of solving the penalty problem at an arbitrary given precision may be replaced by a less stringent criterion while garanteeing the global convergence. Local and global convergence results are presented as well as numerical experiments
Rivet, Sylvain. "Caractérisation complète d'un faisceau laser impulsionnel femtoseconde : mise en évidence et analyse du couplage spatio-temporel dans la propagation linéaire et non linéaire". Bordeaux 1, 2001. http://www.theses.fr/2001BOR12448.
Pełny tekst źródłaTrifonov, Andrey. "Contrôle non destructif par des méthodes d'acoustique non linéaire pour des applications aéronautiques". Thesis, Ecole centrale de Lille, 2017. http://www.theses.fr/2017ECLI0006/document.
Pełny tekst źródłaThis PhD thesis work contributes to the development of nonlinear elastic methods for non-destructive testing and imaging of contact-type defects in solids.In this work, two modifications of recent nonlinear nondestructive testing methods are suggested: the coda wave interferometry combined with the nonlinear time reversal principle and air-coupled nonlinear ultrasonic imaging. The principal advantage of former technique is in its extremely high sensitivity owing to the fact that weak changes in sample's parameters are accumulated and finally greatly amplified during the formation of the coda wave. The other technique has a complimentary strength and offers a possibility of a remote detection. The developed techniques are tested on samples with artificially fabricated defects at known locations. The performance of each method is accessed and the potential for obtaining robust nonlinear images is demonstrated.The second part of the work is concerned with a theoretical description of contact acoustical nonlinearity and its use for creating of a numerical toolbox capable of simulating wave propagation in complex structures containing internal contacts. A physical model describing the tangential shift of two contacting bodies in the presence of friction has been proposed. Its result is an analytical computer-assisted solution for hysteretic relationships between normal and tangential contact displacements and loads. The contact model and derived load-displacement relationships are used as boundary conditions posed at the internal boundaries (contact surfaces) in a finite element wave propagation model programmed via commercial software
Matha, Robin. "Interférométrie self-mixing pour la détection des conditions givrantes". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5018.
Pełny tekst źródłaHere we propose a method allowing the detection of water droplets in atmospheric conditions in a reliable and robust manner. For this, we chose to test the application of self-mixing interferometry to this problem. This complex optical technique consists of extracting information from a non-linear interferometry signal obtained at the terminals of a laser diode subjected to optical feedback onto a scene. It is this scene that generates and contains the information. The representative case study is that of a solid surface moving longitudinally in the axis of the laser beam; the signal is composed of interferometry fringes which form in the non-linear medium which is the laser, each fringe corresponds to a displacement of λ/2 of the surface (λ being the wavelength of the laser) and l The orientation gives the direction of movement of this surface. The self-mixing interferometer, a simple laser diode equipped with a power supply and output amplification, is known to offer great versatility in the nature of the measurements possible (speed measurement, detection of micro particles, 3D imaging, etc) but it also offers important advantages in the design of a sensor: compactness, robust elements, low energy consumption, self-aligned and intrinsically simple system. However, the availability of the measurement in the signal is very dependent on the quantity of light reinjected into the laser cavity. In the context of a rough surface this results in the renewal of the speckle pattern generated by the reflection of the laser beam on this surface.We demonstrate that the availability of the measurement can be ensured by extracting information from three independent self-mixing interferometry channels (power supply, optical system and signal amplification) but also by processing these signals using a network of neurons pre-trained in this framework representative of the moving surface. Thus, as long as at least one channel presents available information, the neural network is able to reconstruct the speed of movement of the surface with precision. In addition, the parallel analysis of several channels makes it possible to increase the precision of this reconstruction. After carrying out this work to increase the robustness of obtaining a measurement, they were adapted to the detection of micrometric water drops. After adapting the neural network to classify the signals; we manage to detect the presence of droplets in front of the beam with a very low error rate. In addition, we also managed to classify interferometry signals from three different scenes: a cloud of micrometric water drops and the same cloud into which larger droplets with a diameter greater than 100 µm are injected with two distributions of different sizes. Finally, we managed to combine artificial intelligence with a complex optical phenomenon to demonstrate in principle a simple, robust, compact and reliable sensor capable of detecting the presence of droplets in the atmosphere as well as distinguishing variations in size of these droplets making up the cloud
Bao, Chengheri. "Analyse par interférométrie laser de la striction diffuse et localisée dans des tôles d'aciers". Thesis, Troyes, 2016. http://www.theses.fr/2016TROY0014/document.
Pełny tekst źródłaThe evolution of the plastic strain localization field of ductile metals was followed by electronic speckle pattern interferometry (ESPI) during a uniaxial tensile test. It was shown that the mathematical model, a system of two crossing straight bands, describes accurately the evolution of the strain rate field from diffuse necking up to rupture. The physical characteristics of the localization, such as the width of the bands, their orientations and maximum strain rates were identified quantitatively. Their evolutions were followed and analyzed from several influencing factors, which are both microscopic, such as grain size and crystal structure, and macroscopic, like the geometry of the specimen and the direction in which the specimen were cut with respect to the rolling direction, and the pulling speed. It has been found that the bands narrow down during the necking process and their orientations were also changing. These evolutions, the necking mode and the transition between the diffuse and localized necking are influenced differently by these factors
Mermillod-Anselme, Quentin. "Spectroscopie cohérente non-linéaire de boîtes quantiques uniques dans des nanostructures photoniques". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY005/document.
Pełny tekst źródłaDecoherence in solids is a major issue towards the realization of a quantum processor based on semiconductor quantum dots (QDs) as optically active qubits. Measuring and controlling the optical coherence of such qubits is required in their fundamental studies, paving a way for technological applications. However, their nanometer size combined to the sub-nanosecond lifetime of their optical transitions, render experimental measurements very challenging.This thesis presents a detailed study of the dephasing mechanisms and the coherent coupling of excitonic complexes strongly confined in individual InAs/GaAs QDs. To achieve these measurements, I developed an heterodyne four-wave mixing experiment sensitive to the amplitude and phase of the electric field emitted by a single QD. With this setup one can measure the lifetime and the coherence time of a single exciton, even in the presence of inhomogeneous broadening. To increase the light-matter interaction and the extraction efficiency of the signal, the use of photonic nanostructures has proved to be necessary. The optical sensitivity of the setup allowed me to study in detail the mechanisms of exciton-phonon interaction, which is an important source of decoherence in solids, like the acoustic polaron formation, the quadratic coupling to acoustic phonons, and the excitation-induced dephasing. Furthermore, by inferring two-dimensional spectra, I demonstrate coherent couplings between various exciton complexes. Finally, I highlight a new multi-wave mixing protocol to control the coherent response of a single exciton, and I propose to employ it to control long-range radiative coupling between two QDs, which is a fundamental step towards achieving a quantum logic gate in solids
Del, Rio Louis. "Utilisation d’un processus d’optique non linéaire en somme de fréquences dans le cadre de l’optique cohérente appliquée à l’imagerie haute résolution". Limoges, 2009. https://aurore.unilim.fr/theses/nxfile/default/b72793dd-5942-49de-87c0-ca3332ab309a/blobholder:0/2009LIMO4070.pdf.
Pełny tekst źródłaThe main scope of the present thesis is to pave the way for the use of non-linear optics in the context of interferometric synthetic aperture in astronomy. The principal achievement is the experimental characterization of the interference of infrared signals with an interferometer working at visible light. This fact is made possible through the use of a nonlinear up-conversion mechanism which preserves the information of the phase front of the signal. The infrared signals at 1,550 μm have been mixed with a common monochromatic pump laser linearly polarized at 1,064 μm in periodically poled Lithium Niobate crystals. Either bulk crystals or waveguides have been used to obtain final up-converted radiations at 632 nm. The simplest case of stellar interferometer combines the radiation of two telescopes. To replicate the same observation at visible wavelengths, we used two distinct up-conversion stages driven by a common pump. The up-converted signals are then recombined andmixed. Such results have been systematically compared with those obtained by a parallel experimental setup based on an infrared interferometer working as a reference. We have focused our experiments to very simple and archetypal configurations in which we measured their temporal or spatial coherence by analyzing the up-converted radiations. In a first set of experiments the signal was composed by a doublet of closely spaced frequencies a bi-frequency radiation centered around 1. 55 μm with a low spectral gap. Our scope was to demonstrate experimentally that the up-converion by sum frequency generation keeps preserved the temporal coherence, as a consequence of theWiener Kinchine theorem. In a second set of experiments, we used a spatial doublet at 1. 55 μm to demonstrate that the same wavelength up-conversion also preserves the spatial coherence, as predicted by the corresponding theorem of Van Cittert Zernike
Chandra, Johanes. "Analyses expérimentales de la réponse sismique non-linéaire du système sol-structure". Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENU023/document.
Pełny tekst źródłaThe concentration of population in urban areas in seismic-prone regions can generate more and more damages and losses. Seismic response in urban areas depends on site effects (direct amplification and nonlinearity of the soil) and the coupling between the soil and structures (soil-structure and site-city interaction). Therefore, the understanding of urban seismology, that is the ground motion incorporating the urban environment, is critical to reduce the damage. This requires the prediction of ground motion in urban areas, a fundamental element in the evaluation of the seismic hazard. Taking into account the amplification caused by the presence of sediment has been widely studied. However, the non-linearity of the soil and the coupling between the ground and the structure is seldom integrated to the prediction of the ground motion. Because of their complexity, these problems have been addressed separately. In this context, this dissertation analyzes the non-linear response of the soil-structure by integrating the non-linearity of the soil and the soil-structure interaction. Two experimental studies were performed, with the aim of providing a proxy that reflects the non-linearity of the soil. The first is the centrifuge test that reproduces the response of soil and structures at reduced scale. The state of stress and strain is conserved by applying an artificial acceleration model. This test was performed at IFSTTAR Nantes in the framework of the ANR ARVISE. Different configurations were tested with and without buildings, under different stress levels, to analyze the response of the soil and structures. The second uses the vertical accelerometric networks of two sites in California: Garner Valley Downhole (GVDA) and the Wildlife Liquefaction Array (WLA), both managed by the University of California, Santa Barbara (UCSB), USA. In-situ response is important since it describes the actual behavior of the site. Information describing the conditions of sites is widely available and the earthquakes recorded were used to test several levels of shaking to reconstruct the overall response of each site. In addition, the GVDA site is equipped with a Soil-Foundation-Structure-Interaction structure (SFSI) which aims to study the problems of soil-structure interaction. In both experiments, thanks to the vertical accelerometer network in the ground and the structure we are able to apply the 1D wave propagation method to extract the response of these systems. The waves are considered as an SH wave which propagates in a 1D horizontal layer. Seismic interferometry by deconvolution method is applied to extract the Impulse Response Function (IRF) of the 1D system. Thus the analysis of the variation in function of elastic properties of the soil and the structure is done under several magnitude of shaking, including variation in depth and the elements of the total response of the structure including the soil-structure interaction. At the end, a deformation proxy to evaluate and also to predict the nonlinear response of the soil, the structure and the soil-structure interaction is proposed
Chen, Guangzhi. "Caractérisation de défauts dans les milieux multi-diffusants : analyse de la méthode non linéaire d’interférométrie de la coda ultrasonore". Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1004.
Pełny tekst źródłaCoda waves are extremely sensitive to small disturbances of the propagation medium and therefore offer abundant information related to material damages. Recently, a method that combines Nonlinear acoustics and Coda Wave Interferometry (NCWI) has been proposed and applied to several types of materials (glass, mortar and concrete). In this thesis, numerical models (for homogeneous and heterogeneous medias ) are developed using the spectral element method to study the nonlinear acosutic effects highlighted by a pump wave of large amplitude and low frequency. Several parameters are related to the influence of the pump wave: the change of the elastic modulus and the quality factor within an area of Effective Damaged Zone (EDZ), the surface of the EDZ, the presence or absence of cracks within the EDZ, the change of the crack lengths and their number. The aim of numerical modeling is to be able to simulate ultrasonic coda waves in a multiple scattering medium with the presence of different types of non-linearities and to propose numerical models that are useful for the diagnosis and optimization of experimental set-ups. An experimental validation of laws linking damage parameters to NCWI observables is performed on a perforated aluminum plate. The nonlinear effects are caused by the contacts of the threads of a variable number of screws in the plate. NCWI allows the characterization and monitoring of different types of non-linearities: it perfectly answers the needs of Non Destructive Evaluation and Testing for early damage detection in complex materials