Gotowa bibliografia na temat „Interfacial thermal conductance”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Interfacial thermal conductance”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Interfacial thermal conductance"
Green, Andrew J., i Hugh H. Richardson. "Solute Effects on Interfacial Thermal Conductance". MRS Proceedings 1543 (2013): 151–57. http://dx.doi.org/10.1557/opl.2013.677.
Pełny tekst źródłaRajabpour, Ali, Saeed Bazrafshan i Sebastian Volz. "Carbon-nitride 2D nanostructures: thermal conductivity and interfacial thermal conductance with the silica substrate". Physical Chemistry Chemical Physics 21, nr 5 (2019): 2507–12. http://dx.doi.org/10.1039/c8cp06992a.
Pełny tekst źródłaYang, Wu Lin, Kun Peng, Jia Jun Zhu, De Yi Li i Ling Ping Zhou. "Numerical Modeling of Thermal Conductivity of Diamond Particle Reinforced Aluminum Composite". Advanced Materials Research 873 (grudzień 2013): 344–49. http://dx.doi.org/10.4028/www.scientific.net/amr.873.344.
Pełny tekst źródłaFan, Hang, Kun Zhang, Guansong He, Zhijian Yang i Fude Nie. "Ab initio determination of interfacial thermal conductance for polymer-bonded explosive interfaces". AIP Advances 12, nr 6 (1.06.2022): 065005. http://dx.doi.org/10.1063/5.0094018.
Pełny tekst źródłaBai, Guang Zhao, Wan Jiang, G. Wang, Li Dong Chen i X. Shi. "Effective Thermal Conductivity of MoSi2/SiC Composites". Materials Science Forum 492-493 (sierpień 2005): 551–54. http://dx.doi.org/10.4028/www.scientific.net/msf.492-493.551.
Pełny tekst źródłaWu, Shuang, Jifen Wang, Huaqing Xie i Zhixiong Guo. "Interfacial Thermal Conductance across Graphene/MoS2 van der Waals Heterostructures". Energies 13, nr 21 (9.11.2020): 5851. http://dx.doi.org/10.3390/en13215851.
Pełny tekst źródłaLiu, Yang, Wenhao Wu, Shixian Yang i Ping Yang. "Interfacial thermal conductance of graphene/MoS2 heterointerface". Surfaces and Interfaces 28 (luty 2022): 101640. http://dx.doi.org/10.1016/j.surfin.2021.101640.
Pełny tekst źródłaYang, Wei, Kun Wang, Yongsheng Fu, Kun Zheng, Yun Chen i Yongmei Ma. "Interfacial Thermal Conductance between Alumina and Epoxy". Journal of Physics: Conference Series 2109, nr 1 (1.11.2021): 012018. http://dx.doi.org/10.1088/1742-6596/2109/1/012018.
Pełny tekst źródłaXu, Ke, Jicheng Zhang, Xiaoli Hao, Ning Wei, Xuezheng Cao, Yang Kang i Kun Cai. "Interfacial thermal conductance of buckling carbon nanotubes". AIP Advances 8, nr 6 (czerwiec 2018): 065116. http://dx.doi.org/10.1063/1.5039499.
Pełny tekst źródłaZhang, Lifa, Juzar Thingna, Dahai He, Jian-Sheng Wang i Baowen Li. "Nonlinearity enhanced interfacial thermal conductance and rectification". EPL (Europhysics Letters) 103, nr 6 (1.09.2013): 64002. http://dx.doi.org/10.1209/0295-5075/103/64002.
Pełny tekst źródłaRozprawy doktorskie na temat "Interfacial thermal conductance"
Bhatt, Hemanshu D. "Effect of interfacial thermal conductance and fiber orientation on the thermal diffusivity/conductivity of unidirectional fiber-reinforced ceramic matrix composites". Diss., This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-07282008-135034/.
Pełny tekst źródłaDiarra, Cheick Oumar. "Modélisation par dynamique moléculaire ab initio du transport des excitons et du transport thermique dans les semiconducteurs organiques pour la collecte d'énergie". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD013.
Pełny tekst źródłaThe exciton plays a central role in the functioning of organic solar cells (OSCs). Understanding its dynamics in organic semiconductors is essential, particularly to optimize the diffusion length, a key property for the performance of planar heterojunctions, which are considered as a potentially more stable alternative to bulk heterojunctions (BHJ) in certain contexts. In the first part of this thesis, we developed a robust and versatile methodological approach to evaluate the exciton diffusion length in organic semiconductors. This method, based on AIMD-ROKS, was successfully validated for the P3HT polymer. It was also applied to the NFA O-IDTBR acceptor, revealing promising diffusion lengths, though still insufficient for planar heterojunctions. The second part of the thesis explores heat transfer in organic semiconductors, a crucial element for the performance of thermoelectric devices. These studies focused on P3HT, a material used in thermoelectricity. First, the thermal conductivity within P3HT chains was studied, revealing the influence of polymer chain length. Then, heat transfers between these chains were also examined
Sears, Matthew. "Applications of Irreversible Thermodynamics: Bulk and Interfacial Electronic, Ionic, Magnetic, and Thermal Transport". Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-08-10096.
Pełny tekst źródła(10225202), Jinhyun Noh. "STRUCTURAL AND MATERIAL INNOVATIONS FOR HIGH PERFORMANCE BETA-GALLIUM OXIDE NANO-MEMBRANE FETS". Thesis, 2021.
Znajdź pełny tekst źródłaBeta-gallium oxide (β-Ga2O3) is an emerging wide bandgap semiconductor for next generation power devices which offers the potential to replace GaN and SiC. It has an ultra-wide bandgap (UWBG) of 4.8 eV and a corresponding Ebr of 8 MV/cm. β-Ga2O3 also possesses a decent intrinsic electron mobility limit of 250 cm2/V·s, yielding high Baliga’s figure of merit of 3444. In addition, the large bandgap of β-Ga2O3 gives stability in harsh environment operation at high temperatures.
Although low-cost large-size β-Ga2O3 native bulk substrates can be realized by melt growth methods, the unique property that (100) surface of β-Ga2O3 has a large lattice constant of 12.23 Å allows it to be cleaved easily into thin and long nano-membranes. Therefore, β-Ga2O3 FETs on foreign substrates by transferring can be fabricated and investigated before β-Ga2O3 epitaxy technology becomes mature and economical viable. Moreover, integrating β-Ga2O3 on high thermal conductivity materials has an advantage in terms of suppressing self-heating effects.
In this dissertation, structural and material
innovations to overcome and improve critical challenges are summarized as
follows: 1) Top-gate nano-membrane β-Ga2O3 FETs on a high thermal conductivity diamond
substrate with record high maximum drain current densities are demonstrated.
The reduced self-heating effect due to high thermal conductivity of the
substrate was verified by thermoreflectance measurement. 2) Local
electro-thermal effect by electrical bias was applied to enhance the electrical
performance of devices and improvements of electrical properties were shown
after the annealing. 3) Thin thermal bridge materials such as HfO2 and ZrO2 were inserted between β-Ga2O3 and
a sapphire substrate to reduce self heating effects without using a diamond
substrate. The improved thermal performance of the device was analyzed by
phonon density of states plots of β-Ga2O3 and the thin film materials. 4) Nano-membrane
tri-gate β-Ga2O3 FETs on SiO2/Si substrate fabricated via exfoliation have been demonstrated for the
first time. 5) Using the robustness of β-Ga2O3 in harsh environments, β-Ga2O3 ferroelectric
FETs operating as synaptic devices up to 400 °C were demonstrated. The result
offers the potential to use the novel device for ultra-wide bandgap logic
applications, specifically neuromorphic computing exposed to harsh
environments.
Części książek na temat "Interfacial thermal conductance"
Choudhary, Rajesh, Aman Singh, Aditya Kumar i Sudhakar Subudhi. "Experimental Investigations on the Thermal Contact Conductance Using Al2O3 Nanoparticles in the Interfacial Material". W Lecture Notes in Mechanical Engineering, 729–40. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7827-4_57.
Pełny tekst źródłaTalapatra, Animesh, i Debasis Datta. "Molecular Dynamics Simulation-Based Study on Enhancing Thermal Properties of Graphene-Reinforced Thermoplastic Polyurethane Nanocomposite for Heat Exchanger Materials". W Inverse Heat Conduction and Heat Exchangers. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.86527.
Pełny tekst źródłaStreszczenia konferencji na temat "Interfacial thermal conductance"
Wang, Yingtao, Yuan Gao, Elham Easy, Eui-Hyeok Yang, Baoxing Xu i Xian Zhang. "Thermal Conductivities and Interfacial Thermal Conductance of 2D WSe2". W 2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS). IEEE, 2020. http://dx.doi.org/10.1109/nems50311.2020.9265628.
Pełny tekst źródłaYuksel, Anil, Edward T. Yu, Michael Cullinan i Jayathi Murthy. "Effect of Interfacial Thermal Conductance Between the Nanoparticles". W ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/ipack2018-8212.
Pełny tekst źródłaChoi, Woon Ih, Kwiseon Kim i Sreekant Narumanchi. "Molecular Dynamics Modeling of Thermal Conductance at Atomically Clean and Disordered Silicon/Aluminum Interfaces". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65409.
Pełny tekst źródłaLv, Wei, i Asegun Henry. "Thermal Interface Conductance Between Aligned Polyethylene and Graphite". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50492.
Pełny tekst źródłaLiu, Chenhan, Jian Wang, Weiyu Chen, Zhiyong Wei, Juekuan Yang i Yunfei Chen. "Interfacial Thermal Conductance Between Carbon Nanotubes From Nonequilibrium Green’s Function Method". W ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/mnhmt2013-22094.
Pełny tekst źródłaHopkins, Patrick E., John C. Duda i Pamela M. Norris. "Contributions of Anharmonic Phonon Interactions to Thermal Boundary Conductance". W ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44135.
Pełny tekst źródłaWang, Mingkang, Diego J. Perez-Morelo, Georg Ramer, Goerges Pavlidis, Jeffrey Schwartz, Andrea Centrone i Vladimir Aksyuk. "Nanophotonic Scanning Probes for Nanoscale Imaging of Thermal Conductivity and Interfacial Thermal Conductance". W CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.atu4m.4.
Pełny tekst źródłaBabaei, Hasan, Pawel Keblinski i J. M. Khodadadi. "Molecular Dynamics Study of the Interfacial Thermal Conductance at the Graphene/Paraffin Interface in Solid and Liquid Phases". W ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17478.
Pełny tekst źródłaJayadeep, U. B., R. Krishna Sabareesh, R. Nirmal, K. V. Rijin i C. B. Sobhan. "Molecular Dynamics Modeling of the Effect of Thermal Interface Material on Thermal Contact Conductance". W ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52204.
Pełny tekst źródłaHopkins, Patrick E., Richard N. Salaway, Robert J. Stevens i Pamela M. Norris. "Dependence of Thermal Boundary Conductance on Interfacial Mixing at the Chromium-Silicon Interface". W ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15288.
Pełny tekst źródłaRaporty organizacyjne na temat "Interfacial thermal conductance"
Norris, Pamela M. Modeling Interfacial Thermal Boundary Conductance of Engineered Interfaces. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2014. http://dx.doi.org/10.21236/ada609810.
Pełny tekst źródła