Gotowa bibliografia na temat „INTERFACE TEMPERATURE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „INTERFACE TEMPERATURE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "INTERFACE TEMPERATURE"
Di Donna, Alice, Alessio Ferrari i Lyesse Laloui. "Experimental investigations of the soil–concrete interface: physical mechanisms, cyclic mobilization, and behaviour at different temperatures". Canadian Geotechnical Journal 53, nr 4 (kwiecień 2016): 659–72. http://dx.doi.org/10.1139/cgj-2015-0294.
Pełny tekst źródłaMotoyama, Munekazu, Masaharu Hirota i Yasutoshi Iriyama. "(Invited) Temperature Effects on Li Nucleation at Cu/Lipon Interfaces". ECS Meeting Abstracts MA2022-01, nr 23 (7.07.2022): 1173. http://dx.doi.org/10.1149/ma2022-01231173mtgabs.
Pełny tekst źródłaShi, Linquan, i Qiang Li. "Numerical simulation and experimental study of contact thermal resistance under high temperature conditions". Thermal Science and Engineering 5, nr 1 (27.02.2022): 1. http://dx.doi.org/10.24294/tse.v5i1.1523.
Pełny tekst źródłaWang, Lili, Xucun Ma i Qi-Kun Xue. "Interface high-temperature superconductivity". Superconductor Science and Technology 29, nr 12 (11.10.2016): 123001. http://dx.doi.org/10.1088/0953-2048/29/12/123001.
Pełny tekst źródłaGozar, A., i I. Bozovic. "High temperature interface superconductivity". Physica C: Superconductivity and its Applications 521-522 (luty 2016): 38–49. http://dx.doi.org/10.1016/j.physc.2016.01.003.
Pełny tekst źródłaLogvenov, G., A. Gozar i I. Bozovic. "High Temperature Interface Superconductivity". Journal of Superconductivity and Novel Magnetism 26, nr 9 (26.04.2013): 2863–65. http://dx.doi.org/10.1007/s10948-013-2215-3.
Pełny tekst źródłaJi, Koochul, Lauren K. Stewart i Chloe Arson. "Molecular Dynamics Analysis of Silica/PMMA Interface Shear Behavior". Polymers 14, nr 5 (4.03.2022): 1039. http://dx.doi.org/10.3390/polym14051039.
Pełny tekst źródłaLiu, Yuwei, Yameng Ji, Fuhao Ye, Weizheng Zhang i Shujun Zhou. "Effects of contact pressure and interface temperature on thermal contact resistance between 2Cr12NiMoWV/BH137 and γ-TiAl/2Cr12NiMoWV interfaces". Thermal Science 24, nr 1 Part A (2020): 313–24. http://dx.doi.org/10.2298/tsci191018470l.
Pełny tekst źródłaHasan, Md Zahid. "Interface Failure of Heated GLARETM Fiber–Metal Laminates under Bird Strike". Aerospace 7, nr 3 (17.03.2020): 28. http://dx.doi.org/10.3390/aerospace7030028.
Pełny tekst źródłaZhong, Zhi Qin, Lu Da Zheng, Shu Ya Wang, Li Ping Dai i Guo Jun Zhang. "Morphological and Compositional Changes in the SiO2/SiC Interfacial Layer Induced by Thermal Annealing of Different Temperature". Advanced Materials Research 884-885 (styczeń 2014): 304–7. http://dx.doi.org/10.4028/www.scientific.net/amr.884-885.304.
Pełny tekst źródłaRozprawy doktorskie na temat "INTERFACE TEMPERATURE"
Karademir, Tanay. "Elevated temperature effects on interface shear behavior". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42764.
Pełny tekst źródłaBerber, Feyza. "CMOS temperature sensor utilizing interface-trap charge pumping". Texas A&M University, 2005. http://hdl.handle.net/1969.1/4157.
Pełny tekst źródłaMOISELLO, ELISABETTA. "Integrated Interface Circuits for MEMS Contact-less Temperature Sensors". Doctoral thesis, Università degli studi di Pavia, 2020. http://hdl.handle.net/11571/1370177.
Pełny tekst źródłaThermal sensors, exploiting the relation between the thermal radiation emitted by an object and its temperature, as expressed by the Stefan-Boltzmann law, allow realizing contact-less temperature measurements, required in a wide range of applications, ranging from fever measurements to presence detection for security and climate control systems. With the advent of smart homes and Internet of Things (IoT) and the wide spreading of mobile and wearable devices, the need for low-cost low-power thermal sensors has arisen, therefore moving the focus of the research away from standard bolometers and pyroelectric detectors and towards uncooled infrared (IR) sensors solutions that can be easily integrated. Bolometers and pyroelectric detectors, which are the main types of thermal sensors found nowadays on the market, in fact, do not comply with the low-cost and easy integration specifications. Integration of thermal sensors is possible through Micro-Electro Mechanical Systems (MEMS) technology, which allows combining on the same substrate or chip both electrical and mechanical structures with dimensions in the micro-meter range, thus providing structures with high thermal isolation and low thermal mass. The micromachining processes that are required to thermally isolate the sensing element from the substrate are versatile and include anisotropic wet etching, dry and wet etching, electrochemical etch stop, or the use of silicon-on-insulator (SOI). In this scenario, STMicroelectronics has fabricated two different novel thermal sensors, which fulfill the low-cost low-power specifications for smart homes, IoT and mobile and wearable devices, while also being compatible with CMOS processes and thus easily integrated: a polysilicon thermopile and a micromachined CMOS transistor, from now on referred to as TMOS. During my Ph.D. activity I was involved in a cooperation between the STMicroelectronics Analog MEMS and Sensors R&D group and the University of Pavia, that led to the design of two readout circuits specifically tailored on the sensors characteristics, one for the thermopile sensor and one for the TMOS (developed by the Technion-Israel Institute of Technology), which were integrated in two test-chip prototypes and thoroughly characterized through measurements as stand-alone devices and as a system with the sensor they were designed for.
Ella, Samantha. "Rubber snow interface and friction". Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/17941.
Pełny tekst źródłaAmoah-Kusi, Christian. "Constant Interface Temperature Reliability Assessment Method: An Alternative Method for Testing Thermal Interface Material in Products". PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2295.
Pełny tekst źródłaLe, Poul Nicolas. "Charge transfer at the high-temperature superconductor/liquid electrolyte interface". Thesis, University of Exeter, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391279.
Pełny tekst źródłaNarayanaswamy, Anand Subramanian. "A Non-Contact Sensor Interface for High-Temperature, MEMS Capacitive Sensors". Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1275675071.
Pełny tekst źródłaSolak, Nuri. "Interface stability in solid oxide fuel cells for intermediate temperature applications". [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-31048.
Pełny tekst źródłaMOURA, VICTOR NOCRATO. "Ginzbutrg-Landau theory with hidden order parameter applied to interface superconductivity". Universidade Federal do CearÃ, 2017. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=19046.
Pełny tekst źródłaIn recent years, several experiments have been reported in which interface superconductivity was observed in heterostructures of different materials, inclunding non-superconductors. The origin of this superconductivity has not yet been elucidated and there is no well-established theory to explain this phenomenon. In 2015 a model based on the Ginzburg-Landau theory was proposed that would explain the interface superconductivity phenomenon assuming a system with two order parameters. It has been proposed that the order parameter characterizing the bulk material with a defective or doped layer permits the formation of a second parameter which competes with the former and prevails over it in the vicinity of the interface. The superconductivity at the interface is then explained by the growth of this second order parameter only in this region, remaining still ``hidden" inside the bulk. The model was applied to a one-dimensional system with an interface, which presented a surprising result: the ``hidden" superconductivity appers in quantized critical temperatures, this allowing the existence of several eigenstates of the system, with different critical temperatures. In this dissertation, we use this model and investigate the unfolding of hidden superconductivity and its quantized temperatures. We observe that the interfaces resemble one-dimensional quantum wells, with the critical temperature playing the role of the energy in the quantum case. Following this idea we use numerical methods to solve the Ginzburg-Landau equations for a system with an arbitrary number of parallel interfaces. Our results show that in this case, the critical temperatures are quantized and degenerate when the interfaces are very separated, but it has its degeneracy broken when we approach the interfaces, as it happens in a lattice of square wells. We then proposed a tight-binding model to estimate critical temperatures on parallel interfaces and verified the validity of this approximation through the numerical solution of the complete problem. We also analyze the vortex states for a square two-dimensional defect, verifying the possibility of creating or destroying vortices in the region of `` hidden" superconductivity through an external magnetic field.
Nos Ãltimos anos foram reportados diversos experimentos em que a supercondutividade de interface foi observada em heteroestruturas de diferentes materiais, inclusive em nÃo-supercondutores extit{a priori}. A origem dessa supercondutividade ainda nÃo foi elucidada e nÃo existe uma teoria bem estabelecida para explicar esse fenÃmeno. Em 2015 foi proposto um modelo com base na teoria de Ginzburg-Landau que explicaria o fenÃmeno de supercondutividade de interface assumindo um sistema com dois parÃmetros de ordem. Foi proposto que o parÃmetro de ordem que caracteriza o material extit{bulk} com uma camada defeituosa, ou dopada, permite a formaÃÃo de um segundo parÃmetro que compete com o primeiro e prevalece sobre ele nas proximidades da interface. A supercondutividade na interface à entÃo explicada pelo crescimento deste segundo parÃmetro de ordem apenas nesta regiÃo, permancecendo ainda ``escondido" dentro do extit{bulk}. O modelo foi aplicado para um sistema unidimensional com uma interface, apresentando um resultado surpreendente: a supercondutividade escondida aparece em temperaturas crÃticas quantizadas, podendo entÃo existir vÃrios autoestados do sistema, com diferentes temperaturas crÃticas. Nessa dissertaÃÃo utilizamos esse modelo e investigamos os desdobramentos da supercondutividade escondida e suas temperaturas quantizadas. Percebemos que as interfaces assemelham-se com poÃos quÃnticos unidimensionais, com a temperatura crÃtica fazendo o anÃlogo ao da energia no caso quÃntico. Seguindo essa ideia utilizamos mÃtodos numÃricos para resolver as equaÃÃes de Ginzburg-Landau para um sistema com um nÃmero arbitrÃrio de interface paralelas. Nossos resultados mostram que neste caso, as temperaturas crÃticas, alÃm de quantizadas, sÃo degeneradas quando as interfaces estÃo muito separadas, mas tem essa degenerescÃncia quebrada quando aproximamos as interfaces, como ocorre em uma rede de poÃos quadrados. Propusemos entÃo um modelo tipo extit{tight-binding} para estimar temperaturas crÃticas em interfaces paralelas e verificamos a validade dessa aproximaÃÃo atravÃs da soluÃÃo numÃrica do problema completo. Analisamos tambÃm os estados de vÃrtices para um defeito bidimensional quadrado, verificando a possibilidade de se criar ou destruir vÃrtices na regiÃo de supercondutividade escondida atravÃs de um campo magnÃtico externo.
Paruchuri, Bhavya. "Effects of Freezing Temperature on Interface Shear Strength of Landfill Geosynthetic Liner". University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1321651367.
Pełny tekst źródłaKsiążki na temat "INTERFACE TEMPERATURE"
Toner, Edwina. 3-2-1 temperature sensing interface. [S.l: The Author], 1994.
Znajdź pełny tekst źródłaA, Patkós, United States. National Aeronautics and Space Administration. i Fermi National Accelerator Laboratory, red. Chiral interface at the finite temperature transition point of QCD. [Batavia, Ill.]: Fermi National Accelerator Laboratory, 1990.
Znajdź pełny tekst źródłaH, Fabik Richard, i Lewis Research Center, red. Using silicon diodes for detecting the liquid-vapor interface in hydrogen. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1992.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Adaptive control of interface by temperature and interface profile feedback in transparent multi-zone crystal growth furnace: Final technical report for NCC3 150. [Washington, DC: National Aeronautics and Space Administration, 1991.
Znajdź pełny tekst źródłaLee, Benjamin Chi-Pui. Temperature gradient-driven Marangoni convection of a spherical liquid-liquid interface under reduced gravity conditions. Ottawa: National Library of Canada, 1999.
Znajdź pełny tekst źródłaBell, L. D. Evidence of momentum conservation at a nonepitaxial metal/semiconductor interface using ballistic electron emission microscopy. [Washington, DC: National Aeronautics and Space Administration, 1996.
Znajdź pełny tekst źródłaBell, L. D. Evidence of momentum conservation at a nonepitaxial metal/semiconductor interface using ballistic electron emission microscopy. [Washington, DC: National Aeronautics and Space Administration, 1996.
Znajdź pełny tekst źródłaC, Gillies Daniel, Lehoczky S. L i United States. National Aeronautics and Space Administration., red. Fluctuations of thermal conductivity and morphological stability. [Washington, DC: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Final technical report on cooperative agreeement NCC 3-109: Temperature and melt solid interface control during crystal growth. [Washington, DC: National Aeronautics and Space Administration, 1990.
Znajdź pełny tekst źródła1935-, Aboudi Jacob, Arnold S. M i NASA Glenn Research Center, red. The effect of interface roughness and oxide film thickness on the inelastic response of thermal barrier coatings to thermal cycling. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Znajdź pełny tekst źródłaCzęści książek na temat "INTERFACE TEMPERATURE"
Singh, Ajay V. "Temperature". W Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, 1–12. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-51727-8_39-1.
Pełny tekst źródłaSingh, Ajay V. "Temperature". W Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, 993–1004. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-52090-2_39.
Pełny tekst źródłaBhushan, Bharat. "Interface Temperature of Sliding Surfaces". W Tribology and Mechanics of Magnetic Storage Devices, 366–411. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-0335-0_5.
Pełny tekst źródłaBhushan, Bharat. "Interface Temperature of Sliding Surfaces". W Tribology and Mechanics of Magnetic Storage Devices, 366–411. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-2364-1_5.
Pełny tekst źródłaSingh, R. Arvind. "Interface Temperature of Sliding Surfaces". W Tribology for Scientists and Engineers, 177–93. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1945-7_5.
Pełny tekst źródłaSteinbach, Ingo, i Hesham Salama. "Temperature". W Lectures on Phase Field, 41–47. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-21171-3_4.
Pełny tekst źródłaKusuhiro, Mukai, i Matsushita Taishi. "Fundamentals of Treating the Interface". W Interfacial Physical Chemistry of High-Temperature Melts, 4–59. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2020]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429265341-2.
Pełny tekst źródłaMa, Yali, i Xueyi Wang. "Temperature Controller Based on USB Interface". W Data Processing Techniques and Applications for Cyber-Physical Systems (DPTA 2019), 369–74. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1468-5_46.
Pełny tekst źródłaKerans, Ronald J., Randall S. Hay, Emmanuel E. Boakye, Kristen A. Keller, Tai-il Mah, Triplicane A. Parthasarathy i Michael K. Cinibulk. "Oxide Fiber-Coatings for Interface Control in Ceramic Composites". W High Temperature Ceramic Matrix Composites, 127–35. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527605622.ch22.
Pełny tekst źródłaYasuda, Hirotsugu K. "Interface Engineering by Low Temperature Plasma Processes". W Plasma Processing of Polymers, 289–303. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8961-1_14.
Pełny tekst źródłaStreszczenia konferencji na temat "INTERFACE TEMPERATURE"
Saitoh, Y., T. Ueda, F. Ogasawara, H. Abe, R. Nomura i Y. Okuda. "Solid-Liquid Interface Motion of 4He Induced by Heat Pulse". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354729.
Pełny tekst źródłaBan, S. L., i Xiaolong Yu. "Cyclotron Resonance of Interface Polarons in a Realistic Heterojunction under Pressure". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355290.
Pełny tekst źródłade Jong, Paul C., i Gerard C. M. Meijer. "High-temperature pressure transducer interface". W 5th Annual International Symposium on Smart Structures and Materials, redaktorzy Vijay K. Varadan, Paul J. McWhorter, Richard A. Singer i Michael J. Vellekoop. SPIE, 1998. http://dx.doi.org/10.1117/12.320180.
Pełny tekst źródłaLall, Pradeep, Padmanava Choudhury i Jaimal Williamson. "Evolution of the Interface Critical Stress Intensity Factors Between TIM Copper Substrates due to High-Temperature Isothermal Aging". W ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/ipack2022-97440.
Pełny tekst źródłaPark, Wan Kyu, Laura H. Greene, John L. Sarrao i Joe D. Thompson. "Andreev Reflection at the Normal-Metal / Heavy-Fermion Superconductor CeCoIn5 Interface by Point-Contact Spectroscopy". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354907.
Pełny tekst źródłaBradley, D. I., S. N. Fisher, A. M. Guénault, R. P. Haley, H. Martin, G. R. Pickett, J. E. Roberts i V. Tsepelin. "The Thermal Boundary Resistance of the Superfluid 3He A-B Phase Interface in the Low Temperature Limit". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354617.
Pełny tekst źródłaHashimoto, Yoshiaki, Toshiyuki Yamagishi, Shingo Katsumoto i Yasuhiro Iye. "Large Magnetoconductance through an Interface between a Two-Dimensional Hole System and a (Ga,Mn)As Layer". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355268.
Pełny tekst źródłaGardner, P. D., i S. Y. Narayan. "InP/Low-Temperature-Deposited SiO 2 Interface". W 1st Intl Conf on Idium Phosphide and Related Materials for Advanced Electronic and Optical Devices, redaktorzy Louis J. Messick i Rajendra Singh. SPIE, 1989. http://dx.doi.org/10.1117/12.962001.
Pełny tekst źródłaBhattacharjee, Mitradip, Pablo Escobedo, Fatemeh Nikbakhtnasrabadi i Ravinder Dahiya. "Printed Flexible Temperature Sensor with NFC Interface". W 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). IEEE, 2020. http://dx.doi.org/10.1109/fleps49123.2020.9239503.
Pełny tekst źródłaPfahni, A. C., J. H. Lienhard i A. H. Slocum. "Temperature control of a handler test interface". W Proceedings International Test Conference 1998. IEEE, 1998. http://dx.doi.org/10.1109/test.1998.743144.
Pełny tekst źródłaRaporty organizacyjne na temat "INTERFACE TEMPERATURE"
Amoah-Kusi, Christian. Constant Interface Temperature Reliability Assessment Method: An Alternative Method for Testing Thermal Interface Material in Products. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.2292.
Pełny tekst źródłaIan Mckirdy. Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C. Office of Scientific and Technical Information (OSTI), grudzień 2010. http://dx.doi.org/10.2172/1004234.
Pełny tekst źródłaBuckner, M. A. et al. Development of a High-Temperature Smart Transducer Interface Node and Telemetry System (HSTINTS). Office of Scientific and Technical Information (OSTI), listopad 2006. http://dx.doi.org/10.2172/939626.
Pełny tekst źródłaTomar, Vikas. An Investigation into the Effects of Interface Stress and Interfacial Arrangement on Temperature Dependent Thermal Properties of a Biological and a Biomimetic Material. Office of Scientific and Technical Information (OSTI), styczeń 2015. http://dx.doi.org/10.2172/1167156.
Pełny tekst źródłaGrummon, D. S. High temperature stability, interface bonding, and mechanical behavior in. beta. -NiAl and Ni sub 3 Al matrix composites with reinforcements modified by ion beam enhanced deposition. Office of Scientific and Technical Information (OSTI), styczeń 1992. http://dx.doi.org/10.2172/7067772.
Pełny tekst źródłaGrummon, D. S. High temperature stability, interface bonding, and mechanical behavior in [beta]-NiAl and Ni[sub 3]Al matrix composites with reinforcements modified by ion beam enhanced deposition. Office of Scientific and Technical Information (OSTI), styczeń 1993. http://dx.doi.org/10.2172/6583595.
Pełny tekst źródłaLever, James, Emily Asenath-Smith, Susan Taylor i Austin Lines. Assessing the mechanisms thought to govern ice and snow friction and their interplay with substrate brittle behavior. Engineer Research and Development Center (U.S.), grudzień 2021. http://dx.doi.org/10.21079/1168142742.
Pełny tekst źródłaGrummon, D. S. High temperature stability, interface bonding, and mechanical behavior in {beta}-NiAl and Ni{sub 3}Al matrix composites with reinforcements modified by ion beam enhanced deposition. Progress report, June 1, 1991--May 31, 1992. Office of Scientific and Technical Information (OSTI), styczeń 1992. http://dx.doi.org/10.2172/10177689.
Pełny tekst źródłaGrummon, D. S. High temperature stability, interface bonding, and mechanical behavior in {beta}-NiAl and Ni{sub 3}Al matrix composites with reinforcements modified by ion beam enhanced deposition. Progress summary report, June 1, 1993--May 31, 1994. Office of Scientific and Technical Information (OSTI), styczeń 1993. http://dx.doi.org/10.2172/10150426.
Pełny tekst źródłaWeaver, John H. High Temperature Superconducting Materials: Thin Films, Surfaces, and Interfaces. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1991. http://dx.doi.org/10.21236/ada237359.
Pełny tekst źródła