Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Intensity modulated radiation therapy.

Artykuły w czasopismach na temat „Intensity modulated radiation therapy”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Intensity modulated radiation therapy”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Lewin, D. I. "Intensity-modulated radiation therapy". Computing in Science & Engineering 4, nr 5 (wrzesień 2002): 8–9. http://dx.doi.org/10.1109/mcise.2002.1032423.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Williams, P. C. "Intensity-Modulated Radiation Therapy". Physics in Medicine and Biology 46, nr 8 (18.07.2001): 2267–68. http://dx.doi.org/10.1088/0031-9155/46/8/701.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Purdy, James A. "Intensity-modulated radiation therapy". International Journal of Radiation Oncology*Biology*Physics 35, nr 4 (lipiec 1996): 845–46. http://dx.doi.org/10.1016/0360-3016(96)00223-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Goffman, Thomas E., i Eli Glatstein. "Intensity-Modulated Radiation Therapy". Radiation Research 158, nr 1 (lipiec 2002): 115–17. http://dx.doi.org/10.1667/0033-7587(2002)158[0115:imrt]2.0.co;2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Murthy, Vedang, i Alan Horwich. "Intensity Modulated Radiation Therapy". European Journal of Cancer 40, nr 16 (listopad 2004): 2349–51. http://dx.doi.org/10.1016/j.ejca.2004.06.029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Lee, N. Y., i S. A. Terezakis. "Intensity-modulated radiation therapy". Journal of Surgical Oncology 97, nr 8 (2008): 691–96. http://dx.doi.org/10.1002/jso.21014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Esiashvili, Natia, Mary Koshy i Jerome Landry. "Intensity-modulated radiation therapy". Current Problems in Cancer 28, nr 2 (marzec 2004): 47–84. http://dx.doi.org/10.1016/j.currproblcancer.2004.01.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Reddya, U. Umamaheswara, i Panduranganath . "Comparison of Volumetric Modulated ARC Therapy (VMAT) to Conventional Intensity Modulated Radiation Therapy for Carcinoma Cervix". Indian Journal of Cancer Education and Research 5, nr 2 (2017): 113–25. http://dx.doi.org/10.21088/ijcer.2321.9815.5217.10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Rana, Suresh. "Intensity modulated radiation therapy versus volumetric intensity modulated arc therapy". Journal of Medical Radiation Sciences 60, nr 3 (22.08.2013): 81–83. http://dx.doi.org/10.1002/jmrs.19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Xu, Tong, Polad M. Shikhaliev, Muthana Al-Ghazi i Sabee Molloi. "Reshapable physical modulator for intensity modulated radiation therapy". Medical Physics 29, nr 10 (12.09.2002): 2222–29. http://dx.doi.org/10.1118/1.1508109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Tang, G., M. Earl, S. Luan, C. Wang, S. Naqvi i C. Yu. "TU-EE-A1-06: Comparison of Intensity-Modulated Radiation Therapy, Intensity-Modulated Arc Therapy and Arc-Modulated Radiation Therapy". Medical Physics 35, nr 6Part22 (czerwiec 2008): 2910. http://dx.doi.org/10.1118/1.2962610.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Ulger, Sukran, Eren Cetin, Serap Catli, Hilal Sarac, Diclehan Kilic i Huseyin Bora. "Intensity-Modulated Radiation Therapy Improves the Target Coverage Over 3-D Planning While Meeting Lung Tolerance Doses for All Patients With Malignant Pleural Mesothelioma". Technology in Cancer Research & Treatment 16, nr 3 (15.11.2016): 332–38. http://dx.doi.org/10.1177/1533034616678110.

Pełny tekst źródła
Streszczenie:
Purpose: To investigate high conformality on target coverage and the ability on creating strict lung dose limitation of intensity-modulated radiation therapy in malignant pleural mesothelioma. Patients and Methods: Twenty-four radiation therapy plannings were evaluated and compared with dosimetric outcomes of conformal radiation therapy and intensity-modulated radiation therapy. Hemithoracal radiation therapy was performed on 12 patients with a fraction of 1.8 Gy to a total dose of 50.4 Gy. All organs at risk were contoured. Radiotherapy plannings were differed according to the technique; conformal radiation therapy was planned with conventionally combined photon–electron fields, and intensity-modulated radiation therapy was planned with 7 to 9 radiation beam angles optimized in inverse planning. Strict dose–volume constraints were applied. Results: Intensity-modulated radiation therapy was statistically superior in target coverage and dose homogeneity (intensity-modulated radiation therapy-planning target volume 95 mean 100%; 3-dimensional conformal radiation therapy-planning target volume 95 mean 71.29%, P = .0001; intensity-modulated radiation therapy-planning target volume 105 mean 11.14%; 3-dimensional conformal radiation therapy-planning target volume 105 mean 35.69%, P = .001). The dosimetric results of the remaining lung was below the limitations on intensity-modulated radiation therapy planning data (intensity-modulated radiation therapy-lung mean dose mean 7.5 [range: 5.6%-8.5%]; intensity-modulated radiation therapy-lung V5 mean 55.55% [range: 47%-59.9%]; intensity-modulated radiation therapy-lung V20 mean 4.5% [range: 0.5%-9.5%]; intensity-modulated radiation therapy-lung V13 mean 13.43% [range: 4.2%-22.9%]). Conclusion: With a complex and large target volume of malignant pleural mesothelioma, intensity-modulated radiation therapy has the ability to deliver efficient tumoricidal radiation dose within the safe dose limits of the remaining lung tissue.
Style APA, Harvard, Vancouver, ISO itp.
13

Ahn, Yong Chan. "Introduction of intensity modulated radiation therapy". Journal of the Korean Medical Association 54, nr 11 (2011): 1172. http://dx.doi.org/10.5124/jkma.2011.54.11.1172.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Siochi, R. Alfredo C. "Virtual micro-intensity modulated radiation therapy". Medical Physics 27, nr 11 (listopad 2000): 2480–93. http://dx.doi.org/10.1118/1.1315314.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Gaede, Stewart. "Optimization in intensity modulated radiation therapy". Medical Physics 31, nr 4 (kwiecień 2004): 952. http://dx.doi.org/10.1118/1.1655708.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Cash, Jennifer C. "Changing Paradigms: Intensity Modulated Radiation Therapy". Seminars in Oncology Nursing 22, nr 4 (listopad 2006): 242–48. http://dx.doi.org/10.1016/j.soncn.2006.07.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Low, D. A., J. F. Dempsey, J. Markman, S. Mutic, J. F. Williamson i J. A. Purdy. "Applicator-guided intensity modulated radiation therapy". International Journal of Radiation Oncology*Biology*Physics 48, nr 3 (styczeń 2000): 209. http://dx.doi.org/10.1016/s0360-3016(00)80212-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Low, Daniel A., Perry W. Grigsby, James F. Dempsey, Sasa Mutic, Jeffrey F. Williamson, Jerry Markman, K. S. Clifford Chao, Eric E. Klein i James A. Purdy. "Applicator-guided intensity-modulated radiation therapy". International Journal of Radiation Oncology*Biology*Physics 52, nr 5 (kwiecień 2002): 1400–1406. http://dx.doi.org/10.1016/s0360-3016(01)02798-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Ito, Yoshinori. "Development of radiation therapy techniques including intensity-modulated radiation therapy". Annals of Oncology 27 (listopad 2016): vii64. http://dx.doi.org/10.1093/annonc/mdw509.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Metcalfe, P., P. Tangboonduangjit i P. White. "Intensity-modulated radiation therapy: overlapping co-axial modulated fields". Physics in Medicine and Biology 49, nr 16 (31.07.2004): 3629–37. http://dx.doi.org/10.1088/0031-9155/49/16/010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Yoon, Han Gyul, Yong Chan Ahn, Dongryul Oh, Jae Myoung Noh, Seung Gyu Park, Heerim Nam, Sang Gyu Ju, Dongyeol Kwon i Seyjoon Park. "Early Clinical Outcomes of Intensity Modulated Radiation Therapy/Intensity Modulated Proton Therapy Combination in Comparison with Intensity Modulated Radiation Therapy Alone in Oropharynx Cancer Patients". Cancers 13, nr 7 (27.03.2021): 1549. http://dx.doi.org/10.3390/cancers13071549.

Pełny tekst źródła
Streszczenie:
Purpose: To report the early clinical outcomes of combining intensity-modulated radiation therapy (IMRT) and intensity-modulated proton therapy (IMPT) in comparison with IMRT alone in treating oropharynx cancer (OPC) patients. Materials and Methods: The medical records of 148 OPC patients who underwent definitive radiotherapy (RT) with concurrent systemic therapy, from January 2016 till December 2019 at Samsung Medical Center, were retrospectively reviewed. During the 5.5 weeks’ RT course, the initial 16 (or 18) fractions were delivered by IMRT in all patients, and the subsequent 12 (or 10) fractions were either by IMRT in 81 patients (IMRT only) or by IMPT in 67 (IMRT/IMPT combination), respectively, based on comparison of adaptive re-plan profiles and availability of equipment. Propensity-score matching (PSM) was done on 76 patients (38 from each group) for comparative analyses. Results: With the median follow-up of 24.7 months, there was no significant difference in overall survival and progression free survival between groups, both before and after PSM. Before PSM, the IMRT/IMPT combination group experienced grade ≥ 3 acute toxicities less frequently: mucositis in 37.0% and 13.4% (p < 0.001); and analgesic quantification algorithm (AQA) in 37.0% and 19.4% (p = 0.019), respectively. The same trends were observed after PSM: mucositis in 39.5% and 15.8% (p = 0.021); and AQA in 47.4% and 21.1% (p = 0.016), respectively. In multivariate logistic regression, grade ≥ 3 mucositis was significantly less frequent in the IMRT/IMPT combination group, both before and after PSM (p = 0.027 and 0.024, respectively). AQA score ≥ 3 was also less frequent in the IMRT/IMPT combination group, both before and after PSM (p = 0.085 and 0.018, respectively). Conclusions: In treating the OPC patients, with comparable early oncologic outcomes, more favorable acute toxicity profiles were achieved following IMRT/IMPT combination than IMRT alone.
Style APA, Harvard, Vancouver, ISO itp.
22

Zhang, Shuming, Ruijie Yang, Chengyu Shi, Jiaqi Li, Hongqing Zhuang, Suqing Tian i Junjie Wang. "Noncoplanar VMAT for Brain Metastases: A Plan Quality and Delivery Efficiency Comparison With Coplanar VMAT, IMRT, and CyberKnife". Technology in Cancer Research & Treatment 18 (1.01.2019): 153303381987162. http://dx.doi.org/10.1177/1533033819871621.

Pełny tekst źródła
Streszczenie:
Purpose: To compare plan quality and delivery efficiency of noncoplanar volumetric modulated arc therapy with coplanar volumetric modulated arc therapy, intensity-modulated radiation therapy, and CyberKnife for multiple brain metastases. Methods: For 15 patients with multiple brain metastases, noncoplanar volumetric modulated arc therapy, coplanar volumetric modulated arc therapy, intensity-modulated radiation therapy, and CyberKnife plans with a prescription dose of 30 Gy in 3 fractions were generated. Noncoplanar volumetric modulated arc therapy and coplanar volumetric modulated arc therapy plans consisted of 4 noncoplanar arcs and 2 full coplanar arcs, respectively. Intensity-modulated radiation therapy plans consisted of 7 coplanar fields. CyberKnife plans used skull tracking to ensure accurate position. All plans were generated to cover 95% target volume with prescription dose. Gradient index, conformity index, normal brain tissue volume ( V 3Gy − V 24Gy), monitor units, and beam on time were evaluated. Results: Gradient index was the lowest for CyberKnife (3.49 ± 0.65), followed by noncoplanar volumetric modulated arc therapy (4.21 ± 1.38), coplanar volumetric modulated arc therapy (4.87 ± 1.35), and intensity-modulated radiation therapy (5.36 ± 1.98). Conformity index was the largest for noncoplanar volumetric modulated arc therapy (0.87 ± 0.03), followed by coplanar volumetric modulated arc therapy (0.86 ± 0.04), CyberKnife (0.86 ± 0.07), and intensity-modulated radiation therapy (0.85 ± 0.05). Normal brain tissue volume at high-to-moderate dose spreads ( V 24Gy − V 9Gy) was significantly reduced in noncoplanar volumetric modulated arc therapy over that of intensity-modulated radiation therapy and coplanar volumetric modulated arc therapy. Normal brain tissue volume for noncoplanar volumetric modulated arc therapy was comparable with noncoplanar volumetric modulated arc therapy at high-dose level ( V 24Gy − V 15Gy) and larger than CyberKnife at moderate-to-low dose level ( V 12Gy − V 3Gy). Monitor units was highest for CyberKnife (28 733.59 ± 7197.85), followed by intensity-modulated radiation therapy (4128.40 ± 1185.38), noncoplanar volumetric modulated arc therapy (3105.20 ± 371.23), and coplanar volumetric modulated arc therapy (2997.27 ± 446.84). Beam on time was longest for CyberKnife (30.25 ± 7.32 minutes), followed by intensity-modulated radiation therapy (2.95 ± 0.85 minutes), noncoplanar volumetric modulated arc therapy (2.61 ± 0.07 minutes), and coplanar volumetric modulated arc therapy (2.30 ± 0.23 minutes). Conclusion: For brain metastases far away from organs-at-risk, noncoplanar volumetric modulated arc therapy generated more rapid dose falloff and higher conformity compared to intensity-modulated radiation therapy and coplanar volumetric modulated arc therapy. Noncoplanar volumetric modulated arc therapy provided a comparable dose falloff with CyberKnife at high-dose level and a slower dose falloff than CyberKnife at moderate-to-low dose level. Noncoplanar volumetric modulated arc therapy plans had less monitor units and shorter beam on time than CyberKnife plans.
Style APA, Harvard, Vancouver, ISO itp.
23

Chan, Timothy C. Y. "Motion-compensating intensity maps in intensity-modulated radiation therapy". IIE Transactions on Healthcare Systems Engineering 3, nr 1 (styczeń 2013): 1–22. http://dx.doi.org/10.1080/19488300.2012.749436.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Jani, Ashesh B., John C. Roeske i Carla Rash. "Intensity-Modulated Radiation Therapy for Prostate Cancer". Clinical Prostate Cancer 2, nr 2 (wrzesień 2003): 98–105. http://dx.doi.org/10.3816/cgc.2003.n.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

NARITA, YUICHIRO, KAZUO HATANO, TAKAYUKI SHIMIZU, HIDEKI SHIMIZU, TSUTOMU IWASE, KIMIO UTAGAWA, HIDEYO ISHIGAKI i YUKIO OKAZAKI. "Dosimetric Verification in Intensity Modulated Radiation Therapy". Japanese Journal of Radiological Technology 58, nr 6 (2002): 761–72. http://dx.doi.org/10.6009/jjrt.kj00001364468.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

NAGATA, Yasushi, Tetsuya AOKI, Takashi MIZOWAKI, Kenji TAKAYAMA, Michihide MITSUMORI, Sinsuke YANO, Masahiro HIRAOKA, Ryo ASATO i Shinzo TANAKA. "INTENSITY-MODULATED RADIATION THERAPY FOR NASOPHARYNGEAL CANCER". Japanese jornal of Head and Neck Cancer 29, nr 1 (2003): 151–58. http://dx.doi.org/10.5981/jjhnc1974.29.151.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Vicini, Frank A., Michael Sharpe, Larry Kestin, Alvaro Martinez i John Wong. "Intensity-Modulated Radiation Therapy for Breast Cancer". American Journal of Cancer 1, nr 4 (2002): 237–45. http://dx.doi.org/10.2165/00024669-200201040-00001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Schüler, Emil, Lei Wang, Billy W. Loo i Peter G. Maxim. "Conical beam geometry intensity-modulated radiation therapy". Physics in Medicine & Biology 64, nr 12 (20.06.2019): 125014. http://dx.doi.org/10.1088/1361-6560/ab246f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Call, Jason A., Brendan M. Prendergast, Lindsay G. Jensen, Celine B. Ord, Karyn A. Goodman, Rojymon Jacob, Loren K. Mell, Charles R. Thomas, Salma K. Jabbour i Robert C. Miller. "Intensity-modulated Radiation Therapy for Anal Cancer". American Journal of Clinical Oncology 39, nr 1 (luty 2016): 8–12. http://dx.doi.org/10.1097/coc.0000000000000009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Konski, Andre. "Cost–effectiveness of intensity-modulated radiation therapy". Expert Review of Pharmacoeconomics & Outcomes Research 5, nr 2 (kwiecień 2005): 137–40. http://dx.doi.org/10.1586/14737167.5.2.137.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Li, H., J. P. Bissonnette, T. Purdie i T. C. Y. Chan. "Robust PET-guided intensity-modulated radiation therapy". Medical Physics 42, nr 8 (28.07.2015): 4863–71. http://dx.doi.org/10.1118/1.4926845.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Zelefsky, Michael J., Zvi Fuks i Steven A. Leibel. "Intensity-modulated radiation therapy for prostate cancer". Seminars in Radiation Oncology 12, nr 3 (lipiec 2002): 229–37. http://dx.doi.org/10.1053/srao.2002.00000.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Uy, Nathan W., Shiao Y. Woo, Bin S. Teh, Wei-Yuan Mai, L. Steven Carpenter, Joseph K. Chiu, Hsin H. Lu i in. "Intensity-modulated radiation therapy (IMRT) for meningioma". International Journal of Radiation Oncology*Biology*Physics 53, nr 5 (sierpień 2002): 1265–70. http://dx.doi.org/10.1016/s0360-3016(02)02823-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Mundt, Arno J., John C. Roeske i Anthony E. Lujan. "Intensity-modulated radiation therapy in gynecologic malignancies". Medical Dosimetry 27, nr 2 (czerwiec 2002): 131–36. http://dx.doi.org/10.1016/s0958-3947(02)00095-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Saw, Cheng B., Komanduri M. Ayyangar, Weining Zhen, Maung Yoe-sein, Susha Pillai i Charles A. Enke. "Clinical implementation of intensity-modulated radiation therapy". Medical Dosimetry 27, nr 2 (czerwiec 2002): 161–69. http://dx.doi.org/10.1016/s0958-3947(02)00099-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Romeijn, H. Edwin, i James F. Dempsey. "Intensity modulated radiation therapy treatment plan optimization". TOP 16, nr 2 (4.11.2008): 215–43. http://dx.doi.org/10.1007/s11750-008-0064-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Schroeder, Thomas M., Murali Chintagumpala, M. Fatih Okcu, J. Kam Chiu, Bin S. Teh, Shiao Y. Woo i Arnold C. Paulino. "Intensity-Modulated Radiation Therapy in Childhood Ependymoma". International Journal of Radiation Oncology*Biology*Physics 71, nr 4 (lipiec 2008): 987–93. http://dx.doi.org/10.1016/j.ijrobp.2007.11.058.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Goyal, Sharad, Alan Cohler, Jayne Camporeale, Venkat Narra i Ning J. Yue. "Intensity-modulated radiation therapy for orbital lymphoma". Radiation Medicine 26, nr 10 (grudzień 2008): 573–81. http://dx.doi.org/10.1007/s11604-008-0276-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Palta, Jatinder R., Chihray Liu i Jonathan G. Li. "Quality Assurance of Intensity-Modulated Radiation Therapy". International Journal of Radiation Oncology*Biology*Physics 71, nr 1 (maj 2008): S108—S112. http://dx.doi.org/10.1016/j.ijrobp.2007.05.092.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Roesink, Judith M. "Salivary Flow and Intensity-modulated Radiation Therapy". European Oncology & Haematology 00, nr 02 (2007): 113. http://dx.doi.org/10.17925/eoh.2007.0.2.113.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Nutting, C., D. P. Dearnaley i S. Webb. "Intensity modulated radiation therapy: a clinical review." British Journal of Radiology 73, nr 869 (maj 2000): 459–69. http://dx.doi.org/10.1259/bjr.73.869.10884741.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Fox, Christopher, H. Edwin Romeijn, Bart Lynch, Chunhua Men, Dionne M. Aleman i James F. Dempsey. "Comparative analysis of60Co intensity-modulated radiation therapy". Physics in Medicine and Biology 53, nr 12 (27.05.2008): 3175–88. http://dx.doi.org/10.1088/0031-9155/53/12/007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Yu, Cedric, David Shepard, Matt Earl, Daliang Cao, Shuang Luan, Chao Wang i Danny Z. Chen. "New Developments in Intensity Modulated Radiation Therapy". Technology in Cancer Research & Treatment 5, nr 5 (październik 2006): 451–64. http://dx.doi.org/10.1177/153303460600500502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Boyer, Arthur L. "The Physics of Intensity-Modulated Radiation Therapy". Physics Today 55, nr 9 (wrzesień 2002): 38–43. http://dx.doi.org/10.1063/1.1522214.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Ehrgott, Matthias, Çiğdem Güler, Horst W. Hamacher i Lizhen Shao. "Mathematical optimization in intensity modulated radiation therapy". Annals of Operations Research 175, nr 1 (5.11.2009): 309–65. http://dx.doi.org/10.1007/s10479-009-0659-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Ehrgott, Matthias, Çiğdem Güler, Horst W. Hamacher i Lizhen Shao. "Mathematical optimization in intensity modulated radiation therapy". 4OR 6, nr 3 (15.08.2008): 199–262. http://dx.doi.org/10.1007/s10288-008-0083-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Salama, Joseph K., John C. Roeske, Neil Mehta i Arno J. Mundt. "Intensity-modulated radiation therapy in gynecologic malignancies". Current Treatment Options in Oncology 5, nr 2 (marzec 2004): 97–108. http://dx.doi.org/10.1007/s11864-004-0042-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Meyer, Jeffrey J., Brian G. Czito i Christopher G. Willett. "Intensity-modulated radiation therapy for gastrointestinal tumors". Current Oncology Reports 10, nr 3 (maj 2008): 206–11. http://dx.doi.org/10.1007/s11912-008-0032-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Gaspar, Laurie E., i Meisong Ding. "A review of intensity-modulated radiation therapy". Current Oncology Reports 10, nr 4 (lipiec 2008): 294–99. http://dx.doi.org/10.1007/s11912-008-0046-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Potters, Louis, Michael Steinberg, Paul Wallner i James Hevezi. "How one defines intensity-modulated radiation therapy". International Journal of Radiation Oncology*Biology*Physics 56, nr 3 (lipiec 2003): 609–10. http://dx.doi.org/10.1016/s0360-3016(03)00205-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii