Artykuły w czasopismach na temat „Intense Convective Clouds”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Intense Convective Clouds”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Biondi, R., W. J. Randel, S. P. Ho, T. Neubert i S. Syndergaard. "Thermal structure of intense convective clouds derived from GPS radio occultations". Atmospheric Chemistry and Physics Discussions 11, nr 10 (27.10.2011): 29093–116. http://dx.doi.org/10.5194/acpd-11-29093-2011.
Pełny tekst źródłaBiondi, R., W. J. Randel, S. P. Ho, T. Neubert i S. Syndergaard. "Thermal structure of intense convective clouds derived from GPS radio occultations". Atmospheric Chemistry and Physics 12, nr 12 (18.06.2012): 5309–18. http://dx.doi.org/10.5194/acp-12-5309-2012.
Pełny tekst źródłaKumar, Shailendra. "Vertical Characteristics of Reflectivity in Intense Convective Clouds using TRMM PR Data". Environment and Natural Resources Research 7, nr 2 (15.05.2017): 58. http://dx.doi.org/10.5539/enrr.v7n2p58.
Pełny tekst źródłaHartung, Daniel C., Justin M. Sieglaff, Lee M. Cronce i Wayne F. Feltz. "An Intercomparison of UW Cloud-Top Cooling Rates with WSR-88D Radar Data". Weather and Forecasting 28, nr 2 (1.04.2013): 463–80. http://dx.doi.org/10.1175/waf-d-12-00021.1.
Pełny tekst źródłaMOHANTY, U. C., N. V. SAM, S. DAS i S. BASU. "A study on the convective structure of the atmosphere over the West Coast of India during ARMEX-I". MAUSAM 56, nr 1 (19.01.2022): 49–58. http://dx.doi.org/10.54302/mausam.v56i1.857.
Pełny tekst źródłaKumar, Shailendra, i G. S. Bhat. "Vertical Profiles of Radar Reflectivity Factor in Intense Convective Clouds in the Tropics". Journal of Applied Meteorology and Climatology 55, nr 5 (maj 2016): 1277–86. http://dx.doi.org/10.1175/jamc-d-15-0110.1.
Pełny tekst źródłaHouze, Robert A. "Clouds in Tropical Cyclones". Monthly Weather Review 138, nr 2 (1.02.2010): 293–344. http://dx.doi.org/10.1175/2009mwr2989.1.
Pełny tekst źródłaSieglaff, Justin M., Lee M. Cronce i Wayne F. Feltz. "Improving Satellite-Based Convective Cloud Growth Monitoring with Visible Optical Depth Retrievals". Journal of Applied Meteorology and Climatology 53, nr 2 (luty 2014): 506–20. http://dx.doi.org/10.1175/jamc-d-13-0139.1.
Pełny tekst źródłaLiu, Jiachen, Jun Yang, Yixiao Zhang i Zhihong Tan. "Convection and Clouds under Different Planetary Gravities Simulated by a Small-domain Cloud-resolving Model". Astrophysical Journal 944, nr 1 (1.02.2023): 45. http://dx.doi.org/10.3847/1538-4357/aca965.
Pełny tekst źródłaRickenbach, Thomas, Paul Kucera, Megan Gentry, Larry Carey, Andrew Lare, Ruei-Fong Lin, Belay Demoz i David O’C Starr. "The Relationship between Anvil Clouds and Convective Cells: A Case Study in South Florida during CRYSTAL-FACE". Monthly Weather Review 136, nr 10 (październik 2008): 3917–32. http://dx.doi.org/10.1175/2008mwr2441.1.
Pełny tekst źródłaSiqueira, Jose Ricardo, William B. Rossow, Luiz Augusto Toledo Machado i Cindy Pearl. "Structural Characteristics of Convective Systems over South America Related to Cold-Frontal Incursions". Monthly Weather Review 133, nr 5 (1.05.2005): 1045–64. http://dx.doi.org/10.1175/mwr2888.1.
Pełny tekst źródłaAumann, H. H., i S. G. DeSouza-Machado. "Deep convective clouds at the tropopause". Atmospheric Chemistry and Physics Discussions 10, nr 7 (2.07.2010): 16475–96. http://dx.doi.org/10.5194/acpd-10-16475-2010.
Pełny tekst źródłaVendrasco, Eder P., Luiz A. T. Machado, Bruno Z. Ribeiro, Edmilson D. Freitas, Rute C. Ferreira i Renato G. Negri. "Cloud-Resolving Model Applied to Nowcasting: An Evaluation of Radar Data Assimilation and Microphysics Parameterization". Weather and Forecasting 35, nr 6 (grudzień 2020): 2345–65. http://dx.doi.org/10.1175/waf-d-20-0017.1.
Pełny tekst źródłaTaylor, Christopher M., Cornelia Klein, Cheikh Dione, Douglas J. Parker, John Marsham, Cheikh Abdoulahat Diop, Jennifer Fletcher i in. "Nowcasting tracks of severe convective storms in West Africa from observations of land surface state". Environmental Research Letters 17, nr 3 (23.02.2022): 034016. http://dx.doi.org/10.1088/1748-9326/ac536d.
Pełny tekst źródłaFriedrich, Katja, Evan A. Kalina, Joshua Aikins, David Gochis i Roy Rasmussen. "Precipitation and Cloud Structures of Intense Rain during the 2013 Great Colorado Flood". Journal of Hydrometeorology 17, nr 1 (17.12.2015): 27–52. http://dx.doi.org/10.1175/jhm-d-14-0157.1.
Pełny tekst źródłaDrofa, A. S., V. N. Ivanov, D. Rosenfeld i A. G. Shilin. "Studying an effect of salt powder seeding used for precipitation enhancement from convective clouds". Atmospheric Chemistry and Physics Discussions 10, nr 4 (23.04.2010): 10741–75. http://dx.doi.org/10.5194/acpd-10-10741-2010.
Pełny tekst źródłaBesson, L., i Y. Lemaître. "Mesoscale Convective Systems in Relation to African and Tropical Easterly Jets". Monthly Weather Review 142, nr 9 (wrzesień 2014): 3224–42. http://dx.doi.org/10.1175/mwr-d-13-00247.1.
Pełny tekst źródłaWapler, Kathrin, Todd P. Lane, Peter T. May, Christian Jakob, Michael J. Manton i Steven T. Siems. "Cloud-System-Resolving Model Simulations of Tropical Cloud Systems Observed during the Tropical Warm Pool-International Cloud Experiment". Monthly Weather Review 138, nr 1 (1.01.2010): 55–73. http://dx.doi.org/10.1175/2009mwr2993.1.
Pełny tekst źródłaOertel, Annika, Michael Sprenger, Hanna Joos, Maxi Boettcher, Heike Konow, Martin Hagen i Heini Wernli. "Observations and simulation of intense convection embedded in a warm conveyor belt – how ambient vertical wind shear determines the dynamical impact". Weather and Climate Dynamics 2, nr 1 (2.02.2021): 89–110. http://dx.doi.org/10.5194/wcd-2-89-2021.
Pełny tekst źródłaLau, William K. M., Kyu-Myong Kim, Jiun-Dar Chern, W. K. Tao i L. Ruby Leung. "Structural changes and variability of the ITCZ induced by radiation–cloud–convection–circulation interactions: inferences from the Goddard Multi-scale Modeling Framework (GMMF) experiments". Climate Dynamics 54, nr 1-2 (5.10.2019): 211–29. http://dx.doi.org/10.1007/s00382-019-05000-y.
Pełny tekst źródłaVarble, Adam C., Stephen W. Nesbitt, Paola Salio, Joseph C. Hardin, Nitin Bharadwaj, Paloma Borque, Paul J. DeMott i in. "Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment". Bulletin of the American Meteorological Society 102, nr 8 (sierpień 2021): E1597—E1620. http://dx.doi.org/10.1175/bams-d-20-0030.1.
Pełny tekst źródłaDrofa, A. S., V. N. Ivanov, D. Rosenfeld i A. G. Shilin. "Studying an effect of salt powder seeding used for precipitation enhancement from convective clouds". Atmospheric Chemistry and Physics 10, nr 16 (27.08.2010): 8011–23. http://dx.doi.org/10.5194/acp-10-8011-2010.
Pełny tekst źródłaZelinka, Mark D., i Dennis L. Hartmann. "Response of Humidity and Clouds to Tropical Deep Convection". Journal of Climate 22, nr 9 (1.05.2009): 2389–404. http://dx.doi.org/10.1175/2008jcli2452.1.
Pełny tekst źródłaLei, Siliang, Xijuan Zhu, Yuxiang Ling, Shiwen Teng i Bin Yao. "Tropical Tropopause Layer Cloud Properties from Spaceborne Active Observations". Remote Sensing 15, nr 5 (22.02.2023): 1223. http://dx.doi.org/10.3390/rs15051223.
Pełny tekst źródłaKodama, Yasu-Masa, Haruna Okabe, Yukie Tomisaka, Katsuya Kotono, Yoshimi Kondo i Hideyuki Kasuya. "Lightning Frequency and Microphysical Properties of Precipitating Clouds over the Western North Pacific during Winter as Derived from TRMM Multisensor Observations". Monthly Weather Review 135, nr 6 (1.06.2007): 2226–41. http://dx.doi.org/10.1175/mwr3388.1.
Pełny tekst źródłaZhou, Y. P., W. K. Tao, A. Y. Hou, W. S. Olson, C. L. Shie, K. M. Lau, M. D. Chou, X. Lin i M. Grecu. "Use of High-Resolution Satellite Observations to Evaluate Cloud and Precipitation Statistics from Cloud-Resolving Model Simulations. Part I: South China Sea Monsoon Experiment". Journal of the Atmospheric Sciences 64, nr 12 (1.12.2007): 4309–29. http://dx.doi.org/10.1175/2007jas2281.1.
Pełny tekst źródłaRiley, Emily M., Brian E. Mapes i Stefan N. Tulich. "Clouds Associated with the Madden–Julian Oscillation: A New Perspective from CloudSat". Journal of the Atmospheric Sciences 68, nr 12 (1.12.2011): 3032–51. http://dx.doi.org/10.1175/jas-d-11-030.1.
Pełny tekst źródłaWall, Christina, Edward Zipser i Chuntao Liu. "An Investigation of the Aerosol Indirect Effect on Convective Intensity Using Satellite Observations". Journal of the Atmospheric Sciences 71, nr 1 (27.12.2013): 430–47. http://dx.doi.org/10.1175/jas-d-13-0158.1.
Pełny tekst źródłaYusnaini, Helmi, i Marzuki . "Vertical Distribution of Radar Reflectivity Factor in Intense Convective Clouds over Indonesia". KnE Engineering 1, nr 2 (16.04.2019): 141. http://dx.doi.org/10.18502/keg.v1i2.4439.
Pełny tekst źródłaYusnaini, H., i Marzuki. "Diurnal variation of radar reflectivity factor during intense convective clouds over Indonesia". Journal of Physics: Conference Series 1528 (kwiecień 2020): 012024. http://dx.doi.org/10.1088/1742-6596/1528/1/012024.
Pełny tekst źródłaZhang, Sidou, Shiyin Liu i Tengfei Zhang. "Analysis on the Evolution and Microphysical Characteristics of Two Consecutive Hailstorms in Spring in Yunnan, China". Atmosphere 12, nr 1 (2.01.2021): 63. http://dx.doi.org/10.3390/atmos12010063.
Pełny tekst źródłaCHERNOKULSKY, A. V., A. V. ELISEEV, F. A. KOZLOV, N. N. KORSHUNOVA, M. V. KURGANSKY, I. I. MOKHOV, V. A. SEMENOV, N. V. SHVETS', A. N. SHIKHOV i YU I. YARINICH. "ATMOSPHERIC SEVERE CONVECTIVE EVENTS IN RUSSIA: CHANGES OBSERVED FROM DIFFERENT DATA". Meteorologiya i Gidrologiya, nr 5 (maj 2022): 27–41. http://dx.doi.org/10.52002/0130-2906-2022-5-27-41.
Pełny tekst źródłaChaboureau, Jean-Pierre, Laurent Labbouz, Cyrille Flamant i Alma Hodzic. "Acceleration of the southern African easterly jet driven by the radiative effect of biomass burning aerosols and its impact on transport during AEROCLO-sA". Atmospheric Chemistry and Physics 22, nr 13 (5.07.2022): 8639–58. http://dx.doi.org/10.5194/acp-22-8639-2022.
Pełny tekst źródłaLee, Jae-Deok, Chun-Chieh Wu i Kosuke Ito. "Diurnal Variation of the Convective Area and Eye Size Associated with the Rapid Intensification of Tropical Cyclones". Monthly Weather Review 148, nr 10 (1.10.2020): 4061–82. http://dx.doi.org/10.1175/mwr-d-19-0345.1.
Pełny tekst źródłaMace, Gerald G., Min Deng, Brian Soden i Ed Zipser. "Association of Tropical Cirrus in the 10–15-km Layer with Deep Convective Sources: An Observational Study Combining Millimeter Radar Data and Satellite-Derived Trajectories". Journal of the Atmospheric Sciences 63, nr 2 (1.02.2006): 480–503. http://dx.doi.org/10.1175/jas3627.1.
Pełny tekst źródłaLane, Todd P., i Robert D. Sharman. "Some Influences of Background Flow Conditions on the Generation of Turbulence due to Gravity Wave Breaking above Deep Convection". Journal of Applied Meteorology and Climatology 47, nr 11 (1.11.2008): 2777–96. http://dx.doi.org/10.1175/2008jamc1787.1.
Pełny tekst źródłaTompkins, Adrian M., i Adeyemi A. Adebiyi. "Using CloudSat Cloud Retrievals to Differentiate Satellite-Derived Rainfall Products over West Africa". Journal of Hydrometeorology 13, nr 6 (1.12.2012): 1810–16. http://dx.doi.org/10.1175/jhm-d-12-039.1.
Pełny tekst źródłaGrell, G., S. R. Freitas, M. Stuefer i J. Fast. "Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts". Atmospheric Chemistry and Physics 11, nr 11 (6.06.2011): 5289–303. http://dx.doi.org/10.5194/acp-11-5289-2011.
Pełny tekst źródłaSiqueira, José Ricardo, i Valdo da Silva Marques. "Tracking and short-term forecasting of mesoscale convective cloud clusters over southeast Brazil using satellite infrared imagery". Journal of Southern Hemisphere Earth Systems Science 71, nr 1 (2021): 1. http://dx.doi.org/10.1071/es19050.
Pełny tekst źródłaBattaglia, Alessandro, Simone Tanelli i Pavlos Kollias. "Polarization Diversity for Millimeter Spaceborne Doppler Radars: An Answer for Observing Deep Convection?" Journal of Atmospheric and Oceanic Technology 30, nr 12 (1.12.2013): 2768–87. http://dx.doi.org/10.1175/jtech-d-13-00085.1.
Pełny tekst źródłaSeifert, Axel, Alexander Khain, Ulrich Blahak i Klaus D. Beheng. "Possible Effects of Collisional Breakup on Mixed-Phase Deep Convection Simulated by a Spectral (Bin) Cloud Model". Journal of the Atmospheric Sciences 62, nr 6 (1.06.2005): 1917–31. http://dx.doi.org/10.1175/jas3432.1.
Pełny tekst źródłaHu, Jiaxi, Daniel Rosenfeld, Alexander Ryzhkov i Pengfei Zhang. "Synergetic Use of the WSR-88D Radars, GOES-R Satellites, and Lightning Networks to Study Microphysical Characteristics of Hurricanes". Journal of Applied Meteorology and Climatology 59, nr 6 (czerwiec 2020): 1051–68. http://dx.doi.org/10.1175/jamc-d-19-0122.1.
Pełny tekst źródłaArgüeso, D., R. Romero i V. Homar. "Precipitation Features of the Maritime Continent in Parameterized and Explicit Convection Models". Journal of Climate 33, nr 6 (15.03.2020): 2449–66. http://dx.doi.org/10.1175/jcli-d-19-0416.1.
Pełny tekst źródłaWu, Ruoting, i Guixing Chen. "Contrasting Cloud Regimes and Associated Rainfall over the South Asian and East Asian Monsoon Regions". Journal of Climate 34, nr 9 (maj 2021): 3663–81. http://dx.doi.org/10.1175/jcli-d-20-0992.1.
Pełny tekst źródłaGayet, J. F., G. Mioche, L. Bugliaro, A. Protat, A. Minikin, M. Wirth, A. Dörnbrack i in. "On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment". Atmospheric Chemistry and Physics Discussions 11, nr 8 (25.08.2011): 23911–58. http://dx.doi.org/10.5194/acpd-11-23911-2011.
Pełny tekst źródłaGayet, J. F., G. Mioche, L. Bugliaro, A. Protat, A. Minikin, M. Wirth, A. Dörnbrack i in. "On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment". Atmospheric Chemistry and Physics 12, nr 2 (16.01.2012): 727–44. http://dx.doi.org/10.5194/acp-12-727-2012.
Pełny tekst źródłaAndari, Bayu Retna Tri, Nurjanna Joko Trilaksono i Muhammad Arif Munandar. "Turbulence analysis on the flight of Etihad airways in Bangka Island using the WRF case study May 4, 2016". Jurnal Meteorologi dan Geofisika 23, nr 3 (8.08.2022): 65. http://dx.doi.org/10.31172/jmg.v23i3.912.
Pełny tekst źródłaSiburian, R., I. J. A. Saragih, M. Situmorang, K. Tarigan, K. Sembiring, M. Sinambela i S. Humaidi. "Simulation of atmospheric dynamics during heavy rain events on Nias Island using WRF model and Himawari-8 satellite data". Journal of Physics: Conference Series 2019, nr 1 (1.10.2021): 012099. http://dx.doi.org/10.1088/1742-6596/2019/1/012099.
Pełny tekst źródłaZuidema, Paquita, Brian Mapes, Jialin Lin, Chris Fairall i Gary Wick. "The Interaction of Clouds and Dry Air in the Eastern Tropical Pacific". Journal of Climate 19, nr 18 (15.09.2006): 4531–44. http://dx.doi.org/10.1175/jcli3836.1.
Pełny tekst źródłaMachado, Luiz A. T., Maria A. F. Silva Dias, Carlos Morales, Gilberto Fisch, Daniel Vila, Rachel Albrecht, Steven J. Goodman i in. "The Chuva Project: How Does Convection Vary across Brazil?" Bulletin of the American Meteorological Society 95, nr 9 (1.09.2014): 1365–80. http://dx.doi.org/10.1175/bams-d-13-00084.1.
Pełny tekst źródła