Artykuły w czasopismach na temat „Intense Convective Cloud (ICC)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Intense Convective Cloud (ICC)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Kumar, Shailendra. "Vertical Characteristics of Reflectivity in Intense Convective Clouds using TRMM PR Data". Environment and Natural Resources Research 7, nr 2 (15.05.2017): 58. http://dx.doi.org/10.5539/enrr.v7n2p58.
Pełny tekst źródłaKumar, Shailendra, i G. S. Bhat. "Vertical Profiles of Radar Reflectivity Factor in Intense Convective Clouds in the Tropics". Journal of Applied Meteorology and Climatology 55, nr 5 (maj 2016): 1277–86. http://dx.doi.org/10.1175/jamc-d-15-0110.1.
Pełny tekst źródłaBiondi, R., W. J. Randel, S. P. Ho, T. Neubert i S. Syndergaard. "Thermal structure of intense convective clouds derived from GPS radio occultations". Atmospheric Chemistry and Physics Discussions 11, nr 10 (27.10.2011): 29093–116. http://dx.doi.org/10.5194/acpd-11-29093-2011.
Pełny tekst źródłaBiondi, R., W. J. Randel, S. P. Ho, T. Neubert i S. Syndergaard. "Thermal structure of intense convective clouds derived from GPS radio occultations". Atmospheric Chemistry and Physics 12, nr 12 (18.06.2012): 5309–18. http://dx.doi.org/10.5194/acp-12-5309-2012.
Pełny tekst źródłaYeh, H.-Y. M., N. Prasad, R. Meneghini, W.-K. Tao, J. A. Jones i R. F. Adler. "Cloud Model-Based Simulation of Spaceborne Radar Observations". Journal of Applied Meteorology 34, nr 1 (1.01.1995): 175–97. http://dx.doi.org/10.1175/1520-0450-34.1.175.
Pełny tekst źródłaZhang, Sidou, Shiyin Liu i Tengfei Zhang. "Analysis on the Evolution and Microphysical Characteristics of Two Consecutive Hailstorms in Spring in Yunnan, China". Atmosphere 12, nr 1 (2.01.2021): 63. http://dx.doi.org/10.3390/atmos12010063.
Pełny tekst źródłaHartung, Daniel C., Justin M. Sieglaff, Lee M. Cronce i Wayne F. Feltz. "An Intercomparison of UW Cloud-Top Cooling Rates with WSR-88D Radar Data". Weather and Forecasting 28, nr 2 (1.04.2013): 463–80. http://dx.doi.org/10.1175/waf-d-12-00021.1.
Pełny tekst źródłaWapler, Kathrin, Todd P. Lane, Peter T. May, Christian Jakob, Michael J. Manton i Steven T. Siems. "Cloud-System-Resolving Model Simulations of Tropical Cloud Systems Observed during the Tropical Warm Pool-International Cloud Experiment". Monthly Weather Review 138, nr 1 (1.01.2010): 55–73. http://dx.doi.org/10.1175/2009mwr2993.1.
Pełny tekst źródłaBouniol, Dominique, Rémy Roca, Thomas Fiolleau i D. Emmanuel Poan. "Macrophysical, Microphysical, and Radiative Properties of Tropical Mesoscale Convective Systems over Their Life Cycle". Journal of Climate 29, nr 9 (22.04.2016): 3353–71. http://dx.doi.org/10.1175/jcli-d-15-0551.1.
Pełny tekst źródłaOertel, Annika, Michael Sprenger, Hanna Joos, Maxi Boettcher, Heike Konow, Martin Hagen i Heini Wernli. "Observations and simulation of intense convection embedded in a warm conveyor belt – how ambient vertical wind shear determines the dynamical impact". Weather and Climate Dynamics 2, nr 1 (2.02.2021): 89–110. http://dx.doi.org/10.5194/wcd-2-89-2021.
Pełny tekst źródłaChernokulsky, Alexander, Andrey Shikhov, Yulia Yarinich i Alexander Sprygin. "An Empirical Relationship among Characteristics of Severe Convective Storms, Their Cloud-Top Properties and Environmental Parameters in Northern Eurasia". Atmosphere 14, nr 1 (13.01.2023): 174. http://dx.doi.org/10.3390/atmos14010174.
Pełny tekst źródłaSiqueira, José Ricardo, i Valdo da Silva Marques. "Tracking and short-term forecasting of mesoscale convective cloud clusters over southeast Brazil using satellite infrared imagery". Journal of Southern Hemisphere Earth Systems Science 71, nr 1 (2021): 1. http://dx.doi.org/10.1071/es19050.
Pełny tekst źródłaRickenbach, Thomas, Paul Kucera, Megan Gentry, Larry Carey, Andrew Lare, Ruei-Fong Lin, Belay Demoz i David O’C Starr. "The Relationship between Anvil Clouds and Convective Cells: A Case Study in South Florida during CRYSTAL-FACE". Monthly Weather Review 136, nr 10 (październik 2008): 3917–32. http://dx.doi.org/10.1175/2008mwr2441.1.
Pełny tekst źródłaMOHANTY, U. C., N. V. SAM, S. DAS i S. BASU. "A study on the convective structure of the atmosphere over the West Coast of India during ARMEX-I". MAUSAM 56, nr 1 (19.01.2022): 49–58. http://dx.doi.org/10.54302/mausam.v56i1.857.
Pełny tekst źródłaZhou, Y. P., W. K. Tao, A. Y. Hou, W. S. Olson, C. L. Shie, K. M. Lau, M. D. Chou, X. Lin i M. Grecu. "Use of High-Resolution Satellite Observations to Evaluate Cloud and Precipitation Statistics from Cloud-Resolving Model Simulations. Part I: South China Sea Monsoon Experiment". Journal of the Atmospheric Sciences 64, nr 12 (1.12.2007): 4309–29. http://dx.doi.org/10.1175/2007jas2281.1.
Pełny tekst źródłaRasmussen, Kristen L., i Robert A. Houze. "Orogenic Convection in Subtropical South America as Seen by the TRMM Satellite". Monthly Weather Review 139, nr 8 (sierpień 2011): 2399–420. http://dx.doi.org/10.1175/mwr-d-10-05006.1.
Pełny tekst źródłaMANDAL, J. C., S. R. KALSI, K. VEERARAGHAVAN i S. R. HALDER. "Some aspects of Bay of Bengal cyclone of 29 January to 4 February 1987". MAUSAM 41, nr 3 (24.02.2022): 43–52. http://dx.doi.org/10.54302/mausam.v41i3.2721.
Pełny tekst źródłaHagos, Samson, Zhe Feng, Sally McFarlane i L. Ruby Leung. "Environment and the Lifetime of Tropical Deep Convection in a Cloud-Permitting Regional Model Simulation". Journal of the Atmospheric Sciences 70, nr 8 (1.08.2013): 2409–25. http://dx.doi.org/10.1175/jas-d-12-0260.1.
Pełny tekst źródłaXu, Weixin, Robert F. Adler i Nai-Yu Wang. "Improving Geostationary Satellite Rainfall Estimates Using Lightning Observations: Underlying Lightning–Rainfall–Cloud Relationships". Journal of Applied Meteorology and Climatology 52, nr 1 (styczeń 2013): 213–29. http://dx.doi.org/10.1175/jamc-d-12-040.1.
Pełny tekst źródłaMazarakis, N., V. Kotroni, K. Lagouvardos, A. A. Argiriou i C. J. Anderson. "The sensitivity of warm period precipitation forecasts to various modifications of the Kain-Fritsch Convective Parameterization scheme". Natural Hazards and Earth System Sciences 11, nr 5 (12.05.2011): 1327–39. http://dx.doi.org/10.5194/nhess-11-1327-2011.
Pełny tekst źródłaDrofa, A. S., V. N. Ivanov, D. Rosenfeld i A. G. Shilin. "Studying an effect of salt powder seeding used for precipitation enhancement from convective clouds". Atmospheric Chemistry and Physics Discussions 10, nr 4 (23.04.2010): 10741–75. http://dx.doi.org/10.5194/acpd-10-10741-2010.
Pełny tekst źródłaHalverson, J., M. Black, S. Braun, D. Cecil, M. Goodman, A. Heymsfield, G. Heymsfield i in. "Nasa's Tropical Cloud Systems and Processes Experiment". Bulletin of the American Meteorological Society 88, nr 6 (1.06.2007): 867–82. http://dx.doi.org/10.1175/bams-88-6-867.
Pełny tekst źródłaThayer-Calder, Katherine, i David A. Randall. "The Role of Convective Moistening in the Madden–Julian Oscillation". Journal of the Atmospheric Sciences 66, nr 11 (1.11.2009): 3297–312. http://dx.doi.org/10.1175/2009jas3081.1.
Pełny tekst źródłaDrofa, A. S., V. N. Ivanov, D. Rosenfeld i A. G. Shilin. "Studying an effect of salt powder seeding used for precipitation enhancement from convective clouds". Atmospheric Chemistry and Physics 10, nr 16 (27.08.2010): 8011–23. http://dx.doi.org/10.5194/acp-10-8011-2010.
Pełny tekst źródłaWall, Christina, Edward Zipser i Chuntao Liu. "An Investigation of the Aerosol Indirect Effect on Convective Intensity Using Satellite Observations". Journal of the Atmospheric Sciences 71, nr 1 (27.12.2013): 430–47. http://dx.doi.org/10.1175/jas-d-13-0158.1.
Pełny tekst źródłaSingh, Martin S., Zhiming Kuang, Eric D. Maloney, Walter M. Hannah i Brandon O. Wolding. "Increasing potential for intense tropical and subtropical thunderstorms under global warming". Proceedings of the National Academy of Sciences 114, nr 44 (16.10.2017): 11657–62. http://dx.doi.org/10.1073/pnas.1707603114.
Pełny tekst źródłaMullendore, Gretchen Louise, i Mariusz Starzec. "Forecast Model Activities for North Dakota Cloud Modification Project". Journal of Weather Modification 48, nr 1 (30.04.2016): 93–98. http://dx.doi.org/10.54782/jwm.v48i1.546.
Pełny tekst źródłaCHERNOKULSKY, A. V., A. V. ELISEEV, F. A. KOZLOV, N. N. KORSHUNOVA, M. V. KURGANSKY, I. I. MOKHOV, V. A. SEMENOV, N. V. SHVETS', A. N. SHIKHOV i YU I. YARINICH. "ATMOSPHERIC SEVERE CONVECTIVE EVENTS IN RUSSIA: CHANGES OBSERVED FROM DIFFERENT DATA". Meteorologiya i Gidrologiya, nr 5 (maj 2022): 27–41. http://dx.doi.org/10.52002/0130-2906-2022-5-27-41.
Pełny tekst źródłaSlawinska, Joanna, Olivier Pauluis, Andrew J. Majda i Wojciech W. Grabowski. "Multiscale Interactions in an Idealized Walker Cell: Simulations with Sparse Space–Time Superparameterization". Monthly Weather Review 143, nr 2 (1.02.2015): 563–80. http://dx.doi.org/10.1175/mwr-d-14-00082.1.
Pełny tekst źródłaKlein, Cornelia, Francis Nkrumah, Christopher M. Taylor i Elijah A. Adefisan. "Seasonality and Trends of Drivers of Mesoscale Convective Systems in Southern West Africa". Journal of Climate 34, nr 1 (styczeń 2021): 71–87. http://dx.doi.org/10.1175/jcli-d-20-0194.1.
Pełny tekst źródłaAumann, H. H., i S. G. DeSouza-Machado. "Deep convective clouds at the tropopause". Atmospheric Chemistry and Physics Discussions 10, nr 7 (2.07.2010): 16475–96. http://dx.doi.org/10.5194/acpd-10-16475-2010.
Pełny tekst źródłaZavolgenskiy, M. V., i P. B. Rutkevich. "Tornado funnel-shaped cloud as convection in a cloudy layer". Advances in Science and Research 3, nr 1 (2.04.2009): 17–21. http://dx.doi.org/10.5194/asr-3-17-2009.
Pełny tekst źródłaGrell, G., S. R. Freitas, M. Stuefer i J. Fast. "Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts". Atmospheric Chemistry and Physics 11, nr 11 (6.06.2011): 5289–303. http://dx.doi.org/10.5194/acp-11-5289-2011.
Pełny tekst źródłaVarble, Adam C., Stephen W. Nesbitt, Paola Salio, Joseph C. Hardin, Nitin Bharadwaj, Paloma Borque, Paul J. DeMott i in. "Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment". Bulletin of the American Meteorological Society 102, nr 8 (sierpień 2021): E1597—E1620. http://dx.doi.org/10.1175/bams-d-20-0030.1.
Pełny tekst źródłaGrant, Leah D., Todd P. Lane i Susan C. van den Heever. "The Role of Cold Pools in Tropical Oceanic Convective Systems". Journal of the Atmospheric Sciences 75, nr 8 (20.07.2018): 2615–34. http://dx.doi.org/10.1175/jas-d-17-0352.1.
Pełny tekst źródłaWang, Chun-Chih, i Daniel J. Kirshbaum. "Thermally Forced Convection over a Mountainous Tropical Island". Journal of the Atmospheric Sciences 72, nr 6 (27.05.2015): 2484–506. http://dx.doi.org/10.1175/jas-d-14-0325.1.
Pełny tekst źródłaHerbert, Ross, i Philip Stier. "Satellite observations of smoke–cloud–radiation interactions over the Amazon rainforest". Atmospheric Chemistry and Physics 23, nr 7 (17.04.2023): 4595–616. http://dx.doi.org/10.5194/acp-23-4595-2023.
Pełny tekst źródłaBraun, Scott A., Michael T. Montgomery, Kevin J. Mallen i Paul D. Reasor. "Simulation and Interpretation of the Genesis of Tropical Storm Gert (2005) as Part of the NASA Tropical Cloud Systems and Processes Experiment". Journal of the Atmospheric Sciences 67, nr 4 (1.04.2010): 999–1025. http://dx.doi.org/10.1175/2009jas3140.1.
Pełny tekst źródłaSieglaff, Justin M., Lee M. Cronce i Wayne F. Feltz. "Improving Satellite-Based Convective Cloud Growth Monitoring with Visible Optical Depth Retrievals". Journal of Applied Meteorology and Climatology 53, nr 2 (luty 2014): 506–20. http://dx.doi.org/10.1175/jamc-d-13-0139.1.
Pełny tekst źródłaLane, Todd P., i Robert D. Sharman. "Some Influences of Background Flow Conditions on the Generation of Turbulence due to Gravity Wave Breaking above Deep Convection". Journal of Applied Meteorology and Climatology 47, nr 11 (1.11.2008): 2777–96. http://dx.doi.org/10.1175/2008jamc1787.1.
Pełny tekst źródłaMatsui, Toshi, Brenda Dolan, Takamichi Iguchi, Steven A. Rutledge, Wei-Kuo Tao i Stephen Lang. "Polarimetric Radar Characteristics of Simulated and Observed Intense Convective Cores for a Midlatitude Continental and Tropical Maritime Environment". Journal of Hydrometeorology 21, nr 3 (marzec 2020): 501–17. http://dx.doi.org/10.1175/jhm-d-19-0185.1.
Pełny tekst źródłaSiqueira, Jose Ricardo, William B. Rossow, Luiz Augusto Toledo Machado i Cindy Pearl. "Structural Characteristics of Convective Systems over South America Related to Cold-Frontal Incursions". Monthly Weather Review 133, nr 5 (1.05.2005): 1045–64. http://dx.doi.org/10.1175/mwr2888.1.
Pełny tekst źródłaVendrasco, Eder P., Luiz A. T. Machado, Bruno Z. Ribeiro, Edmilson D. Freitas, Rute C. Ferreira i Renato G. Negri. "Cloud-Resolving Model Applied to Nowcasting: An Evaluation of Radar Data Assimilation and Microphysics Parameterization". Weather and Forecasting 35, nr 6 (grudzień 2020): 2345–65. http://dx.doi.org/10.1175/waf-d-20-0017.1.
Pełny tekst źródłaSeifert, Axel, Alexander Khain, Ulrich Blahak i Klaus D. Beheng. "Possible Effects of Collisional Breakup on Mixed-Phase Deep Convection Simulated by a Spectral (Bin) Cloud Model". Journal of the Atmospheric Sciences 62, nr 6 (1.06.2005): 1917–31. http://dx.doi.org/10.1175/jas3432.1.
Pełny tekst źródłaSHIVHARE, R. P. "Episodes of aircraft icing during ARMEX phase-I". MAUSAM 56, nr 1 (19.01.2022): 83–88. http://dx.doi.org/10.54302/mausam.v56i1.865.
Pełny tekst źródłaBesson, L., i Y. Lemaître. "Mesoscale Convective Systems in Relation to African and Tropical Easterly Jets". Monthly Weather Review 142, nr 9 (wrzesień 2014): 3224–42. http://dx.doi.org/10.1175/mwr-d-13-00247.1.
Pełny tekst źródłaJohnston, M. S., S. Eliasson, P. Eriksson, R. M. Forbes, A. Gettelman, P. Räisänen i M. D. Zelinka. "Diagnosing the average spatio-temporal impact of convective systems – Part 2: A model intercomparison using satellite data". Atmospheric Chemistry and Physics 14, nr 16 (26.08.2014): 8701–21. http://dx.doi.org/10.5194/acp-14-8701-2014.
Pełny tekst źródłaHu, Jiaxi, Daniel Rosenfeld, Alexander Ryzhkov i Pengfei Zhang. "Synergetic Use of the WSR-88D Radars, GOES-R Satellites, and Lightning Networks to Study Microphysical Characteristics of Hurricanes". Journal of Applied Meteorology and Climatology 59, nr 6 (czerwiec 2020): 1051–68. http://dx.doi.org/10.1175/jamc-d-19-0122.1.
Pełny tekst źródłaJohnston, M. S., S. Eliasson, P. Eriksson, R. M. Forbes, A. Gettelman, P. Räisänen i M. D. Zelinka. "Diagnosing the average spatio-temporal impact of convective systems – Part 2: A model inter-comparison using satellite data". Atmospheric Chemistry and Physics Discussions 14, nr 7 (4.04.2014): 9155–201. http://dx.doi.org/10.5194/acpd-14-9155-2014.
Pełny tekst źródłaKlein, Cornelia, Emily R. Potter, Cornelia Zauner, Wolfgang Gurgiser, Rolando Cruz Encarnación, Alejo Cochachín Rapre i Fabien Maussion. "Farmers’ first rain: investigating dry season rainfall characteristics in the Peruvian Andes". Environmental Research Communications 5, nr 7 (1.07.2023): 071004. http://dx.doi.org/10.1088/2515-7620/ace516.
Pełny tekst źródła