Gotowa bibliografia na temat „Intelligent pressure sensor”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Intelligent pressure sensor”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Intelligent pressure sensor"
Wang, Hao, Meng Nie i Qing An Huang. "Design of Intelligent Meteorological System Based on MEMS". Key Engineering Materials 609-610 (kwiecień 2014): 801–6. http://dx.doi.org/10.4028/www.scientific.net/kem.609-610.801.
Pełny tekst źródłaLu, Xiaozhou, Xi Xie, Qiaobo Gao, Hanlun Hu, Jiayi Yang, Hui Wang, Songlin Wang i Renjie Chen. "Design of biomimetic human-skin-like tactile flexible sensor". Sensor Review 39, nr 3 (20.05.2019): 397–406. http://dx.doi.org/10.1108/sr-01-2018-0007.
Pełny tekst źródłaMartins, Leonardo, Rui Lucena, Rui Almeida, João Belo, Cláudia Quaresma, Adelaide Jesus i Pedro Vieira. "Intelligent Chair Sensor". International Journal of System Dynamics Applications 3, nr 2 (kwiecień 2014): 65–80. http://dx.doi.org/10.4018/ijsda.2014040105.
Pełny tekst źródłaLuo, Yongsong, Xiaoliang Chen, Hongmiao Tian, Xiangming Li, Yangtianyu Lu, Yang Liu i Jinyou Shao. "Gecko-Inspired Slant Hierarchical Microstructure-Based Ultrasensitive Iontronic Pressure Sensor for Intelligent Interaction". Research 2022 (14.06.2022): 1–13. http://dx.doi.org/10.34133/2022/9852138.
Pełny tekst źródłaGuo, Zhenxin, Lixin Mo, Yu Ding, Qingqing Zhang, Xiangyou Meng, Zhengtan Wu, Yinjie Chen, Meijuan Cao, Wei Wang i Luhai Li. "Printed and Flexible Capacitive Pressure Sensor with Carbon Nanotubes based Composite Dielectric Layer". Micromachines 10, nr 11 (23.10.2019): 715. http://dx.doi.org/10.3390/mi10110715.
Pełny tekst źródłaPatra, J. C., A. C. Kot i G. Panda. "An intelligent pressure sensor using neural networks". IEEE Transactions on Instrumentation and Measurement 49, nr 4 (2000): 829–34. http://dx.doi.org/10.1109/19.863933.
Pełny tekst źródłaYu, Qingyang, i Jian Zhang. "Flexible Capacitive Pressure Sensor Based on a Double-Sided Microstructure Porous Dielectric Layer". Micromachines 14, nr 1 (30.12.2022): 111. http://dx.doi.org/10.3390/mi14010111.
Pełny tekst źródłaZhu, Lingfeng, Yancheng Wang, Deqing Mei i Chengpeng Jiang. "Development of Fully Flexible Tactile Pressure Sensor with Bilayer Interlaced Bumps for Robotic Grasping Applications". Micromachines 11, nr 8 (12.08.2020): 770. http://dx.doi.org/10.3390/mi11080770.
Pełny tekst źródłaGao, Jinxia, Longjun Liu, Peng Gao, Yihuan Zheng, Wenxuan Hou i Junhui Wang. "Intelligent Occlusion Stabilization Splint with Stress-Sensor System for Bruxism Diagnosis and Treatment". Sensors 20, nr 1 (22.12.2019): 89. http://dx.doi.org/10.3390/s20010089.
Pełny tekst źródłaRaj, Deepak S., i Ramesh H. S. Babu. "IFAA: An Intelligent Framework Aware Algorithm to Determine the Boundary of Area under Attack in Military Surveillance and Reconnaissance WSN". Revue d'Intelligence Artificielle 36, nr 4 (31.08.2022): 635–40. http://dx.doi.org/10.18280/ria.360417.
Pełny tekst źródłaRozprawy doktorskie na temat "Intelligent pressure sensor"
Rathore, Pradeep Kumar. "Cmos compatible mems structures for pressure sensing applications". Thesis, IIT Delhi, 2015. http://localhost:8080/iit/handle/2074/6894.
Pełny tekst źródłaDe, Clerck Albrey Paul. "Modeling the Thermal Performance of an Intelligent MEMS Pressure Sensor with Self-Calibration Capabilities". Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/100688.
Pełny tekst źródłaMaster of Science
Pressure sensors are used in most engineering applications, and the demand is ever increasing due to emerging fields such as the Internet of things (IOT), automations, and autonomy. One drawback of current pressures sensor technology is their need to be calibrated, ensuring accuracy and function. Sensor calibration requires equipment, trained personnel, and must be done regularly, resulting in significate costs. Borrowing technology, methods, and materials from the integrated circuit industry, the costs of sensor calibration can be addressed by the development of an intelligent MEMS (micro-electromechanical system) pressure sensor with self-calibration capabilities. The self-calibrating capability is achieved by combining a micro-actuator and a micro- pressures sensor into one system. This work focuses on complementing previously obtained experimental testing data with a thermal finite element model to provide a deeper understanding and insight. The model is implemented in the commercial software ANSYS and model uncertainties were addressed via model calibration. The model revealed a temperature gradient within the sensor, and insight into its potential effects. The model is also used as a design tool to reduce energy inefficiencies, decrease the time it takes the sensor to respond, and to study the effects of reducing the sensor size. The studies showed that the power consumption can potentially be decreased up to 92% and the response time can be decreased up to 99% by changing the sensor's substrate material. Furthermore, by halving the sensor reference cavity size, the cavity temperature can be increased by 45% and the time for the sensor to respond can be decrease by 59%.
Liang, Fang-Cheng. "Nouvelle application multifonctionnelle pour textiles intelligents dans les dispositifs optoélectroniques". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAV020.
Pełny tekst źródłaTo date, the development of smart textiles, artificial skins, environmental sensory devices, and flexible/stretchable optoelectronics involve the innovation of material synthesis, mechanical design, and fabrication strategies have attracted considerable attention in wearable displays. The mechanically flexible and stretchable functions with cost-effective, facile, lightweight, and large-area expandability are essential modules to fabricate the optoelectronic devices in various wearable display applications. Among them, electrospinning is an easy, versatile, and inexpensive technique enables flexible morphology tuning, assembling various functional nanofibers, and high-throughput continuous production has motivated extensive studies on wearable electronics applications. Therefore, it is necessary to develop innovative projects including the environment-sensing elements with pH-sensing dependency, temperature-sensitive, full-color switchable chemosensors, stretchable electronics, and tactile sensors for various wearable electronics applications
Pešl, Jiří. "Implementace rozhraní IO-Link do snímačů tlaku". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-220337.
Pełny tekst źródłaSingh, K. "Ann based intelligent pressure sensor in noisy environment". Thesis, 2014. http://ethesis.nitrkl.ac.in/5594/1/E-51.pdf.
Pełny tekst źródłaWEI, NG CHOON, i 黃俊衛. "An Intelligent Sensor with Vibrations and Pressures Measurement for Automated Polishing Machine Monitoring". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/9vh4rk.
Pełny tekst źródła南臺科技大學
電機工程系
107
The surface grinding and polishing process in traditional industries mainly rely on manual operation, which is not only inefficient, but also harmful to the labors’ health with the noise and particle pollution generated. With the development of Industry 4.0, robotic arms are widely used in all kinds of factories. In order to improve the accuracy and reproducibility of automated polishing machines in production process, functions like real-time monitoring and anomaly detection are added, and it is expected to apply robotic arms to polishing and grinding process, at the lowest manufacturing cost. This study proposes an intelligent sensing device for automated polishing machine with vibration and pressure sensor which can senses and responds instantly during grinding process. In this study, we integrate high sensitivity inertial measurement unit (IMU) sensor, pressure sensor, and micro-chip to implement the sense detection of the robotic arm in this study. When the vibration is over the setting limit or getting physical impact, the robot arm will stop working immediately and return to the safe point, waiting for inspection of the problem by staff. Through the Bluetooth 4.0 wireless transmission, the feedback of vibration signal will be transmitted to the main control system instantly. In addition, during the grinding process, the pressure between the processed product and the grinder is very important. The proposed system uses a pressure sensing method to precisely control the touch pressure between the processed product and the grinder within a range of 10 Newton (N), thereby improving the production process and the yield rate. The pressure sensor had a high correlation with the value of standard pressure measuring instruments (R2=0.9946). During polishing, the device can be measured on the actual robotic arm by using 3 different work pieces. The average values of the force at 20N, 15N, 10N and 6N were 20±0.04, 15±0.10, 10±0.04, 6±0.07. In order to verify the stability of the IMU measurement, we set the IMU device on the vibration platform and simulate a frequency from 5Hz to 30 Hz. The experiment results show that the device of the study can indeed detect the frequency on the vibration platform. When in actual used in polishing process of the robotic arm, the contact pressure during the polishing compared with the experimental data of the measuring instruments, and the error rate is within 1%. In the abnormal word pieces experiment, the robotic arm does sound an alarm every time after 10 polishing. In order to facilitate the operator do the correction, this study also designed a separate battery, through the battery device can continuously use up to 6 hours of endurance. We hope that through the integration of the proposed device and robot arms, we can decrease manual operation and be helpful with the vision of robotic arm monitoring and smart manufacturing.
Książki na temat "Intelligent pressure sensor"
Healy, Susan D. Adaptation and the Brain. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780199546756.001.0001.
Pełny tekst źródłaSethna, Razeshta. The Cost of Free Speech. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190656546.003.0009.
Pełny tekst źródłaOlivér, Gábor. CRITIQUE OF THE ASILOMAR AI PRINCIPLES = AZ ASILOMARI ELVEK KRITIKÁJA. GeniaNet Bt., 2022. http://dx.doi.org/10.15170/cotaap-2022.
Pełny tekst źródłaClarke, Steve, Hazem Zohny i Julian Savulescu, red. Rethinking Moral Status. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192894076.001.0001.
Pełny tekst źródłaCzęści książek na temat "Intelligent pressure sensor"
Lata, Anamika, i Nirupama Mandal. "Design and Development of Bending Sensor-Based Pressure Transducer". W Algorithms for Intelligent Systems, 139–44. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3368-3_14.
Pełny tekst źródłaGu, Yumao, Yuanzhen Dai, Yang Liu i Xiaoping Chen. "Electronic Artificial Skin for Application in Pressure Sensor". W Advances in Intelligent Systems and Computing, 433–39. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16841-8_40.
Pełny tekst źródłaShao, Guoyou, Meng Yuan i Ping Liu. "Performance Analysis of Pressure Sensor and Finite Element Simulation". W Advances in Intelligent and Soft Computing, 203–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25194-8_24.
Pełny tekst źródłaZhao, Lin, Jiqiang Wang, Long Jiang i Lianqing Li. "Optical Fiber Pressure Sensor Based on Corrugated Diaphragm Structure". W Advances in Intelligent Systems and Computing, 741–47. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34387-3_91.
Pełny tekst źródłaWang, Huabing, i Changyuan Wan. "Research on Sleeping Posture Recognition Method Based on Pressure Sensor". W Advances in Intelligent Systems and Computing, 235–44. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20451-8_23.
Pełny tekst źródłaLiu, Ping, Guoyou Shao, Meng Yuan i Ying Chen. "Electrical Properties and Mechanics Performance Analysis of MEMS Pressure Sensor". W Advances in Intelligent and Soft Computing, 217–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25194-8_26.
Pełny tekst źródłaJasiulek, Dariusz. "Concept of Sensor for Mining Machines Powered by Pressure Changes". W Advances in Intelligent Systems and Computing, 175–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15857-6_18.
Pełny tekst źródłaAnakal, Sudhir, i P. Sandhya. "Low-Cost IoT Based Spirometer Device with Silicon Pressure Sensor". W Advances in Intelligent Systems and Computing, 153–61. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2475-2_14.
Pełny tekst źródłaChen, Xiao, Cong Zhang, Chuang Ma, Haixiao Liu, Yanling Zheng, Yi Jiang, Yuanyuan Zu i Jianwei Niu. "Evaluation of Helmet Comfort Based on Flexible Pressure Sensor Matrix". W Advances in Intelligent Systems and Computing, 833–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11051-2_127.
Pełny tekst źródłaUpadhyay, Shivam, Vijay Laxmi Kalyani i Chandraprabha Charan. "Designing and Optimization of Nano-ring Resonator-Based Photonic Pressure Sensor". W Advances in Intelligent Systems and Computing, 269–78. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0129-1_29.
Pełny tekst źródłaStreszczenia konferencji na temat "Intelligent pressure sensor"
Khaleghian, Seyedmeysam, i Saied Taheri. "Intelligent Tire Based Pressure Monitoring Algorithm". W ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71048.
Pełny tekst źródłaYang Chuan i Li Chen. "The intelligent pressure sensor system based on DSP". W 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icacte.2010.5579148.
Pełny tekst źródłaHuang, Ruey-Shing S., Hsien-Chung Lee, Mark Gross i C. M. Horwitz. "Novel cantilever-beam field-emission pressure sensor". W Measurement Technology and Intelligent Instruments, redaktor Li Zhu. SPIE, 1993. http://dx.doi.org/10.1117/12.156490.
Pełny tekst źródłaMahmood, Usman, Adel Al-Jumaily i Moha'med Al-Jaafreh. "Type-2 Fuzzy Classification of Blood Pressure Parameters". W 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information. IEEE, 2007. http://dx.doi.org/10.1109/issnip.2007.4496910.
Pełny tekst źródłaBuzi, Erjola, Huseyin Rahmi Seren, Max Deffenbaugh, Ahmed Bukhamseen i Mohamed Larbi Zeghlache. "Sensor Ball: Autonomous, Intelligent Logging Platform". W Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/31149-ms.
Pełny tekst źródłaKrall, Christoph, i Pascal Nicolay. "A completely wireless and passive low-pressure sensor". W 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, 2015. http://dx.doi.org/10.1109/issnip.2015.7106919.
Pełny tekst źródłaSalibindla, S., B. Ripoche, D. T. H. Lai i S. Maas. "Characterization of a new flexible pressure sensor for body sensor networks". W 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, 2013. http://dx.doi.org/10.1109/issnip.2013.6529758.
Pełny tekst źródłaAdelsberger, R., i G. Troster. "PIMU: A wireless pressure-sensing IMU". W 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, 2013. http://dx.doi.org/10.1109/issnip.2013.6529801.
Pełny tekst źródłaWang, Zhongming. "Two-Point Calibration Method for Intelligent Ceramic Pressure Sensor". W 2022 2nd International Conference on Networking, Communications and Information Technology (NetCIT). IEEE, 2022. http://dx.doi.org/10.1109/netcit57419.2022.00041.
Pełny tekst źródłaJi, Tao, Qingle Pang i Xinyun Liu. "An Intelligent Pressure Sensor Using Rough Set Neural Networks". W 2006 IEEE International Conference on Information Acquisition. IEEE, 2006. http://dx.doi.org/10.1109/icia.2006.305816.
Pełny tekst źródłaRaporty organizacyjne na temat "Intelligent pressure sensor"
Delwiche, Michael, Boaz Zion, Robert BonDurant, Judith Rishpon, Ephraim Maltz i Miriam Rosenberg. Biosensors for On-Line Measurement of Reproductive Hormones and Milk Proteins to Improve Dairy Herd Management. United States Department of Agriculture, luty 2001. http://dx.doi.org/10.32747/2001.7573998.bard.
Pełny tekst źródła