Gotowa bibliografia na temat „Insulin signaling-Resistance”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Insulin signaling-Resistance”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Insulin signaling-Resistance"
Beale, Elmus G. "Insulin Signaling and Insulin Resistance". Journal of Investigative Medicine 61, nr 1 (1.01.2013): 11–14. http://dx.doi.org/10.2310/jim.0b013e3182746f95.
Pełny tekst źródłaMartz, Lauren. "Signaling insulin resistance in obesity". Science-Business eXchange 2, nr 30 (sierpień 2009): 1166. http://dx.doi.org/10.1038/scibx.2009.1166.
Pełny tekst źródłaRandriamboavonjy, V., i I. Fleming. "Insulin, Insulin Resistance, and Platelet Signaling in Diabetes". Diabetes Care 32, nr 4 (31.03.2009): 528–30. http://dx.doi.org/10.2337/dc08-1942.
Pełny tekst źródłaZick, Yehiel. "Insulin resistance: a phosphorylation-based uncoupling of insulin signaling". Trends in Cell Biology 11, nr 11 (listopad 2001): 437–41. http://dx.doi.org/10.1016/s0962-8924(01)02129-8.
Pełny tekst źródłaZick, Yehiel. "Insulin resistance: a phosphorylation-based uncoupling of insulin signaling". Trends in Cell Biology 11 (listopad 2001): 437–41. http://dx.doi.org/10.1016/s0962-8924(01)81297-6.
Pełny tekst źródłaHorita, Shoko, Motonobu Nakamura, Masashi Suzuki, Nobuhiko Satoh, Atsushi Suzuki i George Seki. "Selective Insulin Resistance in the Kidney". BioMed Research International 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/5825170.
Pełny tekst źródłaChen, Li, Rui Chen, Hua Wang i Fengxia Liang. "Mechanisms Linking Inflammation to Insulin Resistance". International Journal of Endocrinology 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/508409.
Pełny tekst źródłaChoi, Cheol S., Young-Bum Kim, Felix N. Lee, Janice M. Zabolotny, Barbara B. Kahn i Jang H. Youn. "Lactate induces insulin resistance in skeletal muscle by suppressing glycolysis and impairing insulin signaling". American Journal of Physiology-Endocrinology and Metabolism 283, nr 2 (1.08.2002): E233—E240. http://dx.doi.org/10.1152/ajpendo.00557.2001.
Pełny tekst źródłaBoura-Halfon, Sigalit, i Yehiel Zick. "Phosphorylation of IRS proteins, insulin action, and insulin resistance". American Journal of Physiology-Endocrinology and Metabolism 296, nr 4 (kwiecień 2009): E581—E591. http://dx.doi.org/10.1152/ajpendo.90437.2008.
Pełny tekst źródłaLi, Hongliang, Jiyeon Lee, Chaoyong He, Ming-Hui Zou i Zhonglin Xie. "Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids". American Journal of Physiology-Endocrinology and Metabolism 306, nr 2 (15.01.2014): E197—E209. http://dx.doi.org/10.1152/ajpendo.00202.2013.
Pełny tekst źródłaRozprawy doktorskie na temat "Insulin signaling-Resistance"
Barber, Collin. "SIRT3: Molecular Signaling in Insulin Resistance". Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/315823.
Pełny tekst źródłaPost-translational modification of intracellular proteins through acetylation is recognized as an important regulatory mechanism of cellular energy homeostasis. Specific proteins called sirtuins deacetylate other mitochondrial proteins involved in glucose and lipid metabolism, activating them in metabolic processes. SIRT3 is a sirtuin of particular interest as it is found exclusively in mitochondria and has been shown to affect a variety of cellular metabolic processes. The activity of this enzyme is related to cellular insulin sensitivity. This study attempted to identify the relationship between insulin sensitivity and change in amount of SIRT3 following a bout of exercise in non-diabetic individuals. We find a moderate inverse correlation between insulin sensitivity and increase in SIRT3 abundance following exercise. This suggests that this protein may not be involved directly in cells’ ability to regulate energy homeostasis or that it may act through another mechanism not investigated in this study.
Nyman, Elin. "Insulin signaling dynamics in human adipocytes : Mathematical modeling reveals mechanisms of insulin resistance in type 2 diabetes". Doctoral thesis, Linköpings universitet, Avdelningen för cellbiologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-104725.
Pełny tekst źródłaFranck, Niclas. "On the importance of fat cell size, location and signaling in insulin resistance". Doctoral thesis, Linköping : Linköping University, 2009. http://www.bibl.liu.se/liupubl/disp/disp2009/med1123s.pdf.
Pełny tekst źródłaYamada, Chizumi. "Genetic inactivation of GIP signaling reverses aging-associated insulin resistance through body composition changes". Kyoto University, 2008. http://hdl.handle.net/2433/135794.
Pełny tekst źródłaLee, Nina Louise. "The roles of diet and SirT3 levels in mediating signaling network changes in insulin resistance". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81674.
Pełny tekst źródłaTitle as it appears in MIT Commencement Exercises program, June 2013: Signaling network changes in high fat diet-induced insulin resistance Cataloged from PDF version of thesis.
Includes bibliographical references (p. 73-80).
The goal of my research is to understand the mechanism by which high fat diets mediate insulin sensitivity and the role SirT3 plays in high fat diet-induced insulin resistance. Insulin resistance is defined as the inability of cells and tissues to respond properly to ordinary amounts of insulin and is a precursor to many metabolic diseases such as diabetes and cardiovascular disease. Obesity, brought on in large part by caloric excess from high fat diet feeding, is a major contributor to insulin resistance. The recent drastic increase in the prevalence of obesity makes it imperative that steps are taken to more effectively treat and cure obesity-linked diseases such as diabetes. To identify optimal therapeutic targets, it is crucial to first gain a mechanistic understanding of obesity-induced insulin resistance, and understand how specific changes in the signaling network affect insulin sensitivity. Previous work has demonstrated that levels of SirT3, a mitochondrial protein deacetylase, are diet dependent. Additionally, SirT3 expression levels have been shown to mediate insulin and glucose tolerance in animals in a diet-dependent manner. Perturbations in SirT3 levels also alter the levels of phosphorylation on several canonical insulin signaling proteins. In my research, I further investigated the link between SirT3, diet and insulin resistance from a signaling network perspective. Using mouse liver as a model system, I analyzed liver tissue from mice fed a normal diet (insulin sensitive) or mice fed a high fat diet, thus inducing insulin resistance. Quantification of phenotypic and network events in response to insulin and utilization of computational techniques revealed activated pathways and nodes mediating insulin response, some of which had not been previously associated with the canonical insulin signaling network. I extended the study to analyze the role SirT3 plays in diet-mediated insulin sensitivity by perturbing the level of SirT3 in mice on both normal chow and high fat diets. The results of this research are useful for designing more efficacious therapies to treat insulin resistance-induced diseases.
by Nina Louise Lee.
S.M.
Papazoglou, Ioannis. "Cross-talk between insulin and serotonin signaling in the brain : Involvement of the PI3K/Akt pathway and behavioral consequences in models of insulin resistance". Thesis, Paris 11, 2013. http://www.theses.fr/2013PA11T039/document.
Pełny tekst źródłaInsulin and serotonin (5-HT) are two key players in the maintenance of energy homeostasis which is controlled by the hypothalamus. In this brain region, insulin mediates numerous metabolic effects via the activation of the PI3K/Akt signaling pathway. 5-HT exerts similar biological properties by acting in the hypothalamus but the signaling pathways accountable for these effects are still unclear. Moreover, it has been reported that 5-HT induces the activation of the PI3K/Akt pathway in the hippocampus and the inhibition of GSK3β, suggesting this action as a potential mechanism for the antidepressant effects of this neurotransmitter.The main objectives of this thesis were to study 1/ the serotonin-induced activation of the PI3K/Akt in the hypothalamus of wild type and diabetic rats (Goto-Kakizaki model) and search a potential cross-talk with insulin and, 2/ the mechanisms underlying the high-fat diet induced depression by investigating the role of the phosphorylation of Akt and GSK3β by 5-HT, insulin and leptin in the hippocampus of rats.Here, we show that 5-HT triggers the PI3K/Akt signaling pathway in the rat hypothalamus, and that this activation is attenuated in insulin-resistant conditions, suggesting a cross-talk between insulin and 5-HT. Moreover, we reported that high-fat diet feeding induces a reversible depressive-like behavior, which may involve the PI3K/Akt/GSK3β pathway in subgranular neurons of the dentate gyrus. In conclusion, the activation of the PI3K/Akt pathway and its target GSK3β by 5-HT in the hypothalamus and in the dentate gyrus, respectively, can be impaired in insulin-/leptin-resistant states, which may underlie a link between metabolic diseases and depression
Renström, Frida. "Fat cell insulin resistance : an experimental study focusing on molecular mechanisms in type 2 diabetes". Doctoral thesis, Umeå universitet, Institutionen för folkhälsa och klinisk medicin, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1078.
Pełny tekst źródłaAraújo, Michella Soares Coelho. "Obesidade e resistência à insulina induzida pela restrição crônica no consumo de sal em ratos Wistar: efeitos sobre o balanço energético, sistema renina-angiotensina (SRA) e sinalização da insulina". Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/42/42136/tde-15012007-134042/.
Pełny tekst źródłaRestriction of sodium chloride intake has been associated with insulin resistance (INS-R) and obesity. The molecular mechanisms by which the low salt diet (LSD) can induce INS-R and obesity have not yet been established.The aim of the present study was to evaluate the influences of salt intake on body weight (BW) and on insulin signaling in liver, muscle and white adipose tissue (WAT). Wistar rats were fed a LSD, normal (NSD), or high (HSD) salt diet since weaning. At 12 weeks of age, BW, blood pressure(BP),energy balance, food intake, plasma glucose and angiotesin II (ANGIO II), and hormonal profile were evaluated. Afterward, motor activity, HOMA index, uncoupling protein 1 expression (UCP-1) and tissue adipose ANGIO II content was determined. The early steps of insulin signaling (IR: insulin receptor, IRS-1 and IRS-2: IR substrate 1 and 2, PI-3K: phosphatidylinositol 3-kinase), Akt (protein kinase B) phosphorylation, JNK (c-jun NH2-terminal kinase) activation and IRS-1ser307 (serine 307 of IRS-1) phosphorylation were evaluated by immunoprecipitation and immunoblotting. LSD increased BW, visceral adiposity, blood glucose, insulin, leptin, plasma ANGIO II and its content in BAT. Otherwise, LSD decreased food intake, energy expenditure, UCP-1 expression, adiponectin and ANGIO II content in WAT. Motor activity was not influenced by the dietary salt content. In LSD, a decreasing in IR/PI-3K/Akt/Foxo1 was observed in liver and muscle and an increase in this pathway was showed in adipose tissue. JNK activity and IRS-1ser307 phosphorylation were higher in liver and muscle. In conclusion, LSD induced obesity and insulin resistance due to changes in energy expenditure, SRA and insulin signaling. The INS-R is tissuespecific and is accompanied by JNK activation and IRS-1ser307 phosphorylation.
Steiler, Tatiana L. "Kinase cascades in the regulation of glucose homeostasis /". Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-201-2/.
Pełny tekst źródłaSchäfer, Alexander [Verfasser], Jerzy [Akademischer Betreuer] Adamski, Bernhard [Akademischer Betreuer] Küster i Marius [Akademischer Betreuer] Ueffing. "The Epoxyeicosatrienoic Acid Pathway Enhances Hepatic Insulin Signaling and Is Repressed In High Fat Diet Induced Hepatic Insulin Resistance : A proteomic study / Alexander Schäfer. Betreuer: Jerzy Adamski. Gutachter: Bernhard Küster ; Jerzy Adamski ; Marius Ueffing". München : Universitätsbibliothek der TU München, 2015. http://d-nb.info/1085023532/34.
Pełny tekst źródłaKsiążki na temat "Insulin signaling-Resistance"
Kim, Sang Geon. AMPK-S6K1 signaling pathway as a target for treating hepatic insulin resistance. New York: Nova Science Publishers, 2010.
Znajdź pełny tekst źródłaKim, Sang Geon. AMPK-S6K1 signaling pathway as a target for treating hepatic insulin resistance. Hauppauge, N.Y: Nova Science, 2009.
Znajdź pełny tekst źródłaJ, Dietze Guenther, red. A symposium, autocrine and paracrine signaling between contracting myocardium and coronary endothelium during ischemia: Effect of insulin resistance. New York: Excerpta Medica, 1997.
Znajdź pełny tekst źródłaHøjlund, Kurt. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. 2014.
Znajdź pełny tekst źródłaFederico, Lisa Marie. Mechanistic link between intestinal insulin signaling and lipoprotein metabolism in a model of insulin resistance. 2004.
Znajdź pełny tekst źródłaCzęści książek na temat "Insulin signaling-Resistance"
Kim, Cheorl-Ho. "GM3, Caveolin-1 and Insulin Receptor in Insulin Resistance". W GM3 Signaling, 99–103. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5652-4_18.
Pełny tekst źródła"SER/THR PHOSPHORYLATION OF INSULIN RECEPTOR SIGNALING MOLECULES AND INSULIN RESISTANCE". W Insulin Signaling, 304–28. CRC Press, 2002. http://dx.doi.org/10.1201/b12794-23.
Pełny tekst źródłaTonks, Katherine T., Yvonne Ng, Steven Miller, Adelle CF Coster, Dorit Samocha-Bonet, Tristan J. Iseli, Aimin Xu, Donald J. Chisholm, David E. James i Jerry R. Greenfield. "Insulin Signaling Paradox Characterizes Human Insulin Resistance". W BASIC/TRANSLATIONAL - Diabetes & Glucose Homeostasis: Genetic & Translational Approaches, P2–518—P2–518. The Endocrine Society, 2011. http://dx.doi.org/10.1210/endo-meetings.2011.part3.p6.p2-518.
Pełny tekst źródłaPei, Zhe, Kuo-Chieh Lee, Amber Khan i Hoau-Yan Wang. "Brain Insulin Resistance, Nitric Oxide and Alzheimer’s Disease Pathology". W The Role of Nitric Oxide in Type 2 Diabetes, 238–59. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815079814122010014.
Pełny tekst źródłaMoruzzi, Noah, i Francesca Lazzeri-Barcelo. "Insulin Receptor Isoforms in Physiology and Metabolic Disease". W Insulin Resistance - Evolving Concepts and Treatment Strategies [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103036.
Pełny tekst źródłaBahadoran, Zahra, Parvin Mirmiran, Khosrow Kashfi i Asghar Ghasemi. "Hyperuricemia, Type 2 Diabetes and Insulin Resistance: Role of Nitric Oxide". W The Role of Nitric Oxide in Type 2 Diabetes, 190–209. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815079814122010012.
Pełny tekst źródłaKoenig, Aaron M., Zoe Arvanitakis i Steven E. Arnold. "The Role of Insulin Resistance and Signaling in Dementia". W Type 2 Diabetes and Dementia, 143–68. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-809454-9.00008-1.
Pełny tekst źródłaSengupta, Priyanka, i Debashis Mukhopadhyay. "Possibilities of Combinatorial Therapy: Insulin Dysregulation and the Growth Hormone Perspective on Neurodegeneration". W Tyrosine [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97002.
Pełny tekst źródłaSingh, Atamjit, Nikhita Ghai i PreetMohinder Singh Bedi. "Molecular Mechanisms Involved in Insulin Resistance: Recent Updates and Future Challenges". W Insulin Resistance - Evolving Concepts and Treatment Strategies [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104806.
Pełny tekst źródłaSacerdote, Alan. "Rare and Underappreciated Causes of Polycystic Ovarian Syndrome". W Polycystic Ovary Syndrome [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101946.
Pełny tekst źródłaStreszczenia konferencji na temat "Insulin signaling-Resistance"
Aldali, Sara Haitham, i Sownd Sankaralingam. "Induction of Glyoxalase 1 to prevent Methylglyoxal-Induced Insulin Resistance in Cardiomyocytes". W Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0230.
Pełny tekst źródłaAl-Jaber, Hend Sultan, Layla Jadea Al-Mansoori i Mohamed Aghar Elrayess. "The Role of GATA3 in Adipogenesis & Insulin Resistance". W Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0143.
Pełny tekst źródłaChen, Jian, Xiaoping Su, Andres Rojas, Robert S. Bresalier, John R. Stroehlein i Sai-ching Yeung. "Abstract 3054: Targeting TGF-β signaling for obesity/insulin resistance-associated hepatocellular carcinoma". W Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-3054.
Pełny tekst źródłaQi, Yong, Minghong Xie, Li Wei i Guangjie Hou. "Insulin resistance exacerbates lung inflammation in obese patients via PI3K/Akt signaling pathway". W ERS International Congress 2019 abstracts. European Respiratory Society, 2019. http://dx.doi.org/10.1183/13993003.congress-2019.pa3343.
Pełny tekst źródłaGehrke, N., BK Straub, A. Waisman, D. Schuppan, MA Wörns, PR Galle i JM Schattenberg. "Hepatic IL-1 signaling in NAFLD is a driver of whole-body insulin resistance and adipose tissue inflammation." W 36. Jahrestagung der Deutschen Arbeitsgemeinschaft zum Studium der Leber. Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0039-3402163.
Pełny tekst źródłaKim, Jin-Soo, Sun Phil Choi, Yoo-Shin Kim, Woo-Young Kim i Ho-Young Lee. "Abstract LB-41: Histone deacetylase (HDAC) inhibition induces a resistance mechanism via the insulin-like growth factor-1 receptor (IGF-1R) signaling pathway: Rational basis for cotargeting of IGF-1R and HDAC in non-small cell lung cancer". W Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-lb-41.
Pełny tekst źródłaRaporty organizacyjne na temat "Insulin signaling-Resistance"
Boisclair, Yves R., i Arieh Gertler. Development and Use of Leptin Receptor Antagonists to Increase Appetite and Adaptive Metabolism in Ruminants. United States Department of Agriculture, styczeń 2012. http://dx.doi.org/10.32747/2012.7697120.bard.
Pełny tekst źródłaHansen, Peter J., i Amir Arav. Embryo transfer as a tool for improving fertility of heat-stressed dairy cattle. United States Department of Agriculture, wrzesień 2007. http://dx.doi.org/10.32747/2007.7587730.bard.
Pełny tekst źródła