Gotowa bibliografia na temat „Instability and transition”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Instability and transition”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Instability and transition"
Morkovin, Mark V. "Instability and Transition". International Journal of Heat and Fluid Flow 12, nr 4 (grudzień 1991): 384. http://dx.doi.org/10.1016/0142-727x(91)90029-u.
Pełny tekst źródłaMen, Hongyuan, Xinliang Li i Hongwei Liu. "Direct numerical simulations of hypersonic boundary layer transition over a hypersonic transition research vehicle model lifting body at different angles of attack". Physics of Fluids 35, nr 4 (kwiecień 2023): 044111. http://dx.doi.org/10.1063/5.0146651.
Pełny tekst źródłaMarshall, Victor W., Philippa J. Clarke i Peri J. Ballantyne. "Instability in the Retirement Transition". Research on Aging 23, nr 4 (lipiec 2001): 379–409. http://dx.doi.org/10.1177/0164027501234001.
Pełny tekst źródłaDagaut, J., M. E. Negretti, G. Balarac i C. Brun. "Linear to turbulent Görtler instability transition". Physics of Fluids 33, nr 1 (1.01.2021): 014102. http://dx.doi.org/10.1063/5.0033944.
Pełny tekst źródłaLee, S. Y., i J. M. Wang. "Microwave Instability across the Transition Energy". IEEE Transactions on Nuclear Science 32, nr 5 (październik 1985): 2323–25. http://dx.doi.org/10.1109/tns.1985.4333900.
Pełny tekst źródłaCOOK, ANDREW W., WILLIAM CABOT i PAUL L. MILLER. "The mixing transition in RayleighTaylor instability". Journal of Fluid Mechanics 511 (25.07.2004): 333–62. http://dx.doi.org/10.1017/s0022112004009681.
Pełny tekst źródłaBayly, B. J., S. A. Orszag i T. Herbert. "Instability Mechanisms in Shear-Flow Transition". Annual Review of Fluid Mechanics 20, nr 1 (styczeń 1988): 359–91. http://dx.doi.org/10.1146/annurev.fl.20.010188.002043.
Pełny tekst źródłaCHAURASIA, HEMANT K., i MARK C. THOMPSON. "Three-dimensional instabilities in the boundary-layer flow over a long rectangular plate". Journal of Fluid Mechanics 681 (16.06.2011): 411–33. http://dx.doi.org/10.1017/jfm.2011.205.
Pełny tekst źródłaGranatosky, Michael C., Caleb M. Bryce, Jandy Hanna, Aidan Fitzsimons, Myra F. Laird, Kelsey Stilson, Christine E. Wall i Callum F. Ross. "Inter-stride variability triggers gait transitions in mammals and birds". Proceedings of the Royal Society B: Biological Sciences 285, nr 1893 (12.12.2018): 20181766. http://dx.doi.org/10.1098/rspb.2018.1766.
Pełny tekst źródłaKobayashi, Ryoji. "Review: Laminar-to-Turbulent Transition of Three-Dimensional Boundary Layers on Rotating Bodies". Journal of Fluids Engineering 116, nr 2 (1.06.1994): 200–211. http://dx.doi.org/10.1115/1.2910255.
Pełny tekst źródłaRozprawy doktorskie na temat "Instability and transition"
Zhao, Yongling. "Instability and Transition of Natural Convection Boundary Layers". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/13126.
Pełny tekst źródłaPicella, Francesco. "Retarder la transition vers la turbulence en imitant les feuilles de lotus". Thesis, Paris, ENSAM, 2019. http://www.theses.fr/2019ENAM0014/document.
Pełny tekst źródłaMany passive control strategies have been recently proposed for reducing drag in wall-bounded shearflows. Among them, underwater SuperHydrophobic Surfaces (SHS) have proven to be capable of dramaticallyreducing the skin friction of a liquid flowing on top of them, due to the presence of gas bubbles trapped within thesurface nano-sculptures. In specific geometrical and thermodynamical conditions for which wetting transition isavoided (in particular, when the roughness elements characterizing the SHS are several orders of magnitude smallerthan the overlying flow), the so-called ’Lotus effect’ is achieved, for which the flow appears to slip on the surfacewith a non zero velocity. In this framework, we propose to study, by means of numerical simulations, the influence ofSHS on laminar-turbulent transition in a channel flow. To do so we have performed a series of direct numericalsimulations (DNS), from the laminar to the fully turbulent state, covering the majority of transition scenarios knownin the literature, as well as local and global stability analysis so to determine the influence of SHS onto the initialstages of the process. While the conditions for observing controlled K-type transition in a temporal channel flow arewell defined, this is not the case for uncontrolled ones. To this end, a novel theoretical numerical framework has beendeveloped so to enable the observation of natural transition in wall-bounded flows. This method, similarly to theFree-Stream-Turbulence framework available for the boundary layer flow, is capable of triggering uncontrolledtransition t hrough flow receptivity to a purpose-built forcing. Different surface modellings for the superhydrophobicsurfaces are tested. First, homogeneous slip conditions are used. Then, the spatial heterogeneity of the SHS has beenconsidered by modelling it as a flat surface with alternating slip no-slip boundary conditions. Finally, the dynamics ofeach microscopic liquid-gas free-surface has been taken into account by means of a fully coupled fluid-structuresolver, using an Arbitrary Lagrangian Eulerian formulation. We show that while SHS are ineffective in controllingtransition in noisy environment , they can strongly delay transition to turbulence for the K-type scenario . Thisbehaviour results from the balance of two opposing effects. On one hand slippery surfaces inhibit the development ofcharacteristic hairpin vortices by altering the vortex stretching-tilting process. On the other hand, the movement ofthe gas-liquid free-surfaces interacts with the overlying coherent structures, producing wall-normal velocities thatenhance the sweep-ejection process, leading to a rapid formation of hairpin-like head vortices. Thus, whenconsidering flat interfaces transition time is strongly increased, while taking into account the interface dynamicsinduces smaller changes with respect to the no-slip case, indicating the need for an appropriate modelling of SHS fortransition delay purposes
Patel, Sanjay. "Computational modelling of instability and transition using high-resolution methods". Thesis, Cranfield University, 2007. http://hdl.handle.net/1826/3235.
Pełny tekst źródłaYoshimura, Kazuyuki. "Mode instability and chaoticity transition in one-dimensional anharmonic lattices". Kyoto University, 1997. http://hdl.handle.net/2433/202314.
Pełny tekst źródłaRobey, H. F. Liepmann H. W. Liepmann H. W. "The nature of oblique instability waves in boundary layer transition /". Diss., Pasadena, Calif. : California Institute of Technology, 1986. http://resolver.caltech.edu/CaltechETD:etd-05242007-150746.
Pełny tekst źródłaSavin, Deborah Jane. "Linear and nonlinear aspects of interactive boundary layer transition". Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243306.
Pełny tekst źródłaHagan, J. "Nonlinear instabilities and transition to turbulence in magnetohydrodynamic channel flow". Thesis, Coventry University, 2013. http://curve.coventry.ac.uk/open/items/cc5976b0-419c-4944-a2ff-3af446a03d05/1.
Pełny tekst źródłaHosseini, Seyed Mohammad. "Stability and transition of three-dimensional boundary layers". Licentiate thesis, KTH, Stabilitet, Transition, Kontroll, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-123175.
Pełny tekst źródłaQC 20130604
RECEPT
Appelquist, Ellinor. "The rotating-disk boundary-layer flow studied through numerical simulations". Doctoral thesis, KTH, Mekanik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200827.
Pełny tekst źródłaQC 20170203
Schmidt, Oliver [Verfasser]. "Numerical investigations of instability and transition in streamwise corner-flows / Oliver Schmidt". München : Verlag Dr. Hut, 2014. http://d-nb.info/1052375626/34.
Pełny tekst źródłaKsiążki na temat "Instability and transition"
Hussaini, M. Y., i R. G. Voigt, red. Instability and Transition. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4612-3430-2.
Pełny tekst źródłaHussaini, M. Y., i R. G. Voigt, red. Instability and Transition. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3432-6.
Pełny tekst źródłaYousuff, Hussaini M., Voigt Robert G, Institute for Computer Applications in Science and Engineering. i Langley Research Center, red. Instability and transition. New York: Springer-Verlag, 1990.
Znajdź pełny tekst źródłaHussaini, M. Y., A. Kumar i C. L. Streett, red. Instability, Transition, and Turbulence. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8.
Pełny tekst źródłaHussaini, M. Y. Instability, Transition, and Turbulence. New York, NY: Springer New York, 1992.
Znajdź pełny tekst źródłaYousuff, Hussaini M., Kumar Ajay i Streett Craig L, red. Instability, transition, and turbulence. New York: Springer-Verlag, 1992.
Znajdź pełny tekst źródłaYaglom, Akiva M. Hydrodynamic Instability and Transition to Turbulence. Redaktor Uriel Frisch. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4237-6.
Pełny tekst źródłaYaglom, Akiva M. Hydrodynamic Instability and Transition to Turbulence. Dordrecht: Springer Netherlands, 2012.
Znajdź pełny tekst źródłaLost in transition: Youth, work, and instability in postindustrial Japan. Cambridge: Cambridge University Press, 2011.
Znajdź pełny tekst źródłaMorkovin, Mark Vladimir. Recent insights into instability and transition to turbulence in open-flow systems. Hampton, Va: ICASE, 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "Instability and transition"
Stuart, J. T. "Instability and Transition". W Advances in Turbulence, 2–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83045-7_1.
Pełny tekst źródłaSchmid, Peter J., i Dan S. Henningson. "Secondary Instability". W Stability and Transition in Shear Flows, 373–99. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0185-1_8.
Pełny tekst źródłaWilkinson, Stephen P. "Group Summary: Experiments". W Instability, Transition, and Turbulence, 3. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_1.
Pełny tekst źródłaSalas, Manuel D. "Group Summary: Advanced Asymptotics — II". W Instability, Transition, and Turbulence, 95. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_10.
Pełny tekst źródłaBerger, Stanley A. "Ellipticity in the Vortex Breakdown Problem". W Instability, Transition, and Turbulence, 96–106. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_11.
Pełny tekst źródłaMalmuth, Norman D. "Inviscid Stability of Hypersonic Strong Interaction Flow Over a Flat Plate". W Instability, Transition, and Turbulence, 107–26. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_12.
Pełny tekst źródłaGrosch, C. E., T. L. Jackson i A. K. Kapila. "Nonseparable Eigenmodes of the Incompressible Boundary Layer". W Instability, Transition, and Turbulence, 127–36. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_13.
Pełny tekst źródłaBridges, Thomas J. "Spatially-Quasiperiodic States in Shear Flows". W Instability, Transition, and Turbulence, 137–45. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_14.
Pełny tekst źródłaMalik, Mujeeb R. "Group Summary: Advanced Stability". W Instability, Transition, and Turbulence, 149–50. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_15.
Pełny tekst źródłaDhanak, Manhar R. "Effect of Suction on the Stability of Flow on a Rotating Disk". W Instability, Transition, and Turbulence, 151–67. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2956-8_16.
Pełny tekst źródłaStreszczenia konferencji na temat "Instability and transition"
aguirre manco, Jhonatan andres, i Marcio Teixeira de Mendonca. "Instability of Binary Subsonic Coaxial Jets". W 12th Spring School on Transition and Turbulence. ABCM, 2020. http://dx.doi.org/10.26678/abcm.eptt2020.ept20-0011.
Pełny tekst źródłaReshotko, Eli. "Boundary layer instability, transition and control". W 32nd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1.
Pełny tekst źródłaFINLAY, WARREN, JOSEPH KELLER i JOEL FERZIGER. "Instability and transition in nonaxisymmetric curved channel flow". W 1st National Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-3761.
Pełny tekst źródłaCaballina, Ophe´lie, Eric Climent i Jan Dusˇek. "Instability and Transition of a Plane Bubble Plume". W ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31451.
Pełny tekst źródłaSavelyev, A. A., E. S. Matyash, A. I. Troshin i M. V. Ustinov. "ACCOUNTING CROSSFLOW INSTABILITY IN γ-SST TRANSITION MODEL". W INTERNATIONAL CONFERENCE ON THE METHODS OF AEROPHYSICAL RESEARCH. Novosibirsk: Издательство Сибирского отделения РАН, 2022. http://dx.doi.org/10.53954/9785604788974_139.
Pełny tekst źródłaNg, K. Y., i J. Norem. "Short-bunch production and microwave instability near transition". W Workshop on instabilities of high intensity hadron beams in rings. AIP, 1999. http://dx.doi.org/10.1063/1.1301887.
Pełny tekst źródłaHatman, Anca, i Ting Wang. "Separated-Flow Transition: Part 3 — Primary Modes and Vortex Dynamics". W ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-463.
Pełny tekst źródłaMALIK, M., i P. BALAKUMAR. "Instability and transition in three-dimensional supersonic boundary layers". W AlAA 4th International Aerospace Planes Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-5049.
Pełny tekst źródłaMorioka, S., F. Joussellin i H. Monji. "FLOW PATTERN TRANSITION DUE TO INSTABILITY OF VOIDAGE WAVE". W Dynamics of Two-Phase Flows. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/0-8493-9925-4.210.
Pełny tekst źródłaSawada, Hiroyoshi, Kosuke Sekiyama, Tadayoshi Aoyama, Yasuhisa Hasegawa i Toshio Fukuda. "Locomotion transition scheme with instability evaluation using Bayesian Network". W 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010). IEEE, 2010. http://dx.doi.org/10.1109/iros.2010.5650086.
Pełny tekst źródłaRaporty organizacyjne na temat "Instability and transition"
Spong, D., K. Shaing, B. Carreras, L. Charlton, J. Callen i L. Garcia. Transition from resistive ballooning to neoclassical magnetohydrodynamic pressure-gradient-driven instability. Office of Scientific and Technical Information (OSTI), październik 1988. http://dx.doi.org/10.2172/6866651.
Pełny tekst źródłaShepherd, Joseph E. Transition Delay in Hypervelocity Boundary Layers By Means of CO2/Acoustic Instability Interaction. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2014. http://dx.doi.org/10.21236/ada619007.
Pełny tekst źródłaPeralta, Pedro, Elizabeth Fortin, Saul Opie, Sudrishti Gautam, Ashish Gopalakrishnan, Jenna Lynch, Yan Chen i Eric Loomis. Shock-Driven Hydrodynamic Instability Growth Near Phase Boundaries and Material Property Transitions: Final Report. Office of Scientific and Technical Information (OSTI), marzec 2017. http://dx.doi.org/10.2172/1348981.
Pełny tekst źródła