Gotowa bibliografia na temat „Inorganic light-emitting diodes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Inorganic light-emitting diodes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Inorganic light-emitting diodes"
Wang, Ming-Sheng, i Guo-Cong Guo. "Inorganic–organic hybrid white light phosphors". Chemical Communications 52, nr 90 (2016): 13194–204. http://dx.doi.org/10.1039/c6cc03184f.
Pełny tekst źródłaVitukhnovsky, A. G. "Hybrid Organic-Inorganic Light Emitting Diodes". EPJ Web of Conferences 103 (2015): 01012. http://dx.doi.org/10.1051/epjconf/201510301012.
Pełny tekst źródłaVitukhnovsky, A. G., A. A. Vashchenko i R. B. Vasiliev. "Hybrid organic–inorganic light emitting diodes". Bulletin of the Russian Academy of Sciences: Physics 80, nr 7 (lipiec 2016): 803–7. http://dx.doi.org/10.3103/s1062873816070236.
Pełny tekst źródłaErmakov, O. N., M. G. Kaplunov, O. N. Efimov, I. K. Yakushchenko, M. Yu Belov i M. F. Budyka. "Hybrid organic–inorganic light-emitting diodes". Microelectronic Engineering 69, nr 2-4 (wrzesień 2003): 208–12. http://dx.doi.org/10.1016/s0167-9317(03)00298-3.
Pełny tekst źródłaMorais, Tony Dantes de, Frederic Chaput, Khalid Lahlil i Jean-Pierre Boilot. "Hybrid Organic-Inorganic Light-Emitting Diodes". Advanced Materials 11, nr 2 (luty 1999): 107–12. http://dx.doi.org/10.1002/(sici)1521-4095(199902)11:2<107::aid-adma107>3.0.co;2-j.
Pełny tekst źródłaSessolo, Michele, i Henk J. Bolink. "Hybrid Organic-Inorganic Light-Emitting Diodes". Advanced Materials 23, nr 16 (22.02.2011): 1829–45. http://dx.doi.org/10.1002/adma.201004324.
Pełny tekst źródłaLi, Ning, Ying Suet Lau, Yanqin Miao i Furong Zhu. "Electroluminescence and photo-response of inorganic halide perovskite bi-functional diodes". Nanophotonics 7, nr 12 (26.11.2018): 1981–88. http://dx.doi.org/10.1515/nanoph-2018-0149.
Pełny tekst źródłaLewis, R. B., D. A. Beaton, Xianfeng Lu i T. Tiedje. "light emitting diodes". Journal of Crystal Growth 311, nr 7 (marzec 2009): 1872–75. http://dx.doi.org/10.1016/j.jcrysgro.2008.11.093.
Pełny tekst źródłaXiao, Peng, Junhua Huang, Dong Yan, Dongxiang Luo, Jian Yuan, Baiquan Liu i Dong Liang. "Emergence of Nanoplatelet Light-Emitting Diodes". Materials 11, nr 8 (8.08.2018): 1376. http://dx.doi.org/10.3390/ma11081376.
Pełny tekst źródłaBolink, Henk J., Hicham Brine, Eugenio Coronado i Michele Sessolo. "Phosphorescent Hybrid Organic-Inorganic Light-Emitting Diodes". Advanced Materials 22, nr 19 (8.03.2010): 2198–201. http://dx.doi.org/10.1002/adma.200904018.
Pełny tekst źródłaRozprawy doktorskie na temat "Inorganic light-emitting diodes"
White, Wade M. "Synthesis and photoluminescent properties of linear and starburst compounds based on benzimidazole, 2-(2'-pyridyl)benzimidazole and 2,2'-dipyridylamine". Thesis, Kingston, Ont. : [s.n.], 2007. http://hdl.handle.net/1974/495.
Pełny tekst źródłaKrautz, Danny [Verfasser]. "Hybrid organic-inorganic structures for solution processed organic light emitting diodes (OLEDs) / Danny Krautz". Wuppertal : Universitätsbibliothek Wuppertal, 2014. http://d-nb.info/1053771452/34.
Pełny tekst źródłaSellappan, Raja. "Light emitting diodes based on n-type ZnO nanorods and p-type organic semiconductors". Thesis, Linköping University, Department of Science and Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11197.
Pełny tekst źródłaThe aim of this thesis work was to fabricate a hybrid LED using organic-inorganic ZnO materials. The goal of the project was to get an efficient white light emission from zinc oxide (ZnO) nanorods active layer. Since most of the organic materials are good for hole mobility and most of the inorganic materials are good for electron mobility, it is possible to fabricate a high performance heterostructure electroluminescence device from organic-inorganic materials. This thesis work was an attempt towards fabricating such a high electroluminescence LED from hybrid materials in which polymer acts as a p-type material and ZnO acts as a n-type material. The growth mechanism of ZnO nanorods using low-temperature aqueous solution method has been studied and nanorods (NRs) growth was examined with scanning electron microscope (SEM). Optimum hole injection polymers have been studied. Finally, the fabricated device was characterized using parameter analyzer. The fabricated device worked as a diode i.e. it rectified current as expected and the desirable light emission has almost been achieved.
Ates, Elif Selen. "Hydrothermally Grown Zinc Oxide Nanowires And Their Utilization In Light Emitting Diodes And Photodetectors". Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614374/index.pdf.
Pełny tekst źródłaFernandes, Ricardo Liz de Castilho. "Green emitting diodes for solid state lighting". Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/17763.
Pełny tekst źródłaNos anos recentes a iluminação de estado sólido impulsionou alternativas de iluminação efí cientes e ecológicas. Os desafi os correntes envolvem o desenvolvimento de materiais emissores de luz que convertem radiação de uma determinada energia para radiação de energia mais baixa, na gama do visível. Esta tese estuda um complexo novo, Tb(NaI)3(H2O)2 onde NaI é o ácido nalidíxico, que emite na região do verde e é estável sob iluminação no ultravioleta. Este foi incorporado em materiais híbridos orgânico-inorgânico tripodais com dois pesos moleculares médios (3000 e 5000 g.mol-1, denominados t- U(3000) e t-U(5000) respetivamente) que permitem o processamento de monólitos e fi lmes com forma e espessura controlada. Estes híbridos também aumentam o rendimento quântico absoluto de emissão de 0.11 medidos para o Tb(NaI)3(H2O)2 isolado para ~0.82 após incorporação no t-U(5000). Foi também demonstrado o potencial de usar estes materiais híbridos como emissores na região verde para uso em iluminação de estado sólido através do revestimento do díodo emissor na região ultravioleta (365 nm). Este LED apresenta uma efi cácia de 1.3 lm.W1.
In the last few years, solid state light-emitting diodes (LEDs) have been driving the lighting industry towards energy e cient and environmental friendly lighting. Current challenges encompass e cient and low-cost downconverting photoluminescent phosphors with emission in the visible region. This thesis will cover a novel UV-photostable green emitting complex, Tb(NaI)3(H2O)2 where NaI is nalidixic acid, was incorporated into organic-inorganic tripodal hybrid materials with two average molecular weights (3000 and 5000 g.mol{1, termed as t- U(5000) and t-U(3000), respectively) which enable the easy shaping of monoliths and lms with controlled thickness. Moreover, the hybrid hosts boost the Tb3+ green absolute emission quantum yield from 0.11 measured for the isolated Tb(NaI)3(H2O)2 complex to 0.82 after incorporation into t-U(5000). The potential use of the hybrid materials as UV-down converting green-emitting phosphors for solid state lighting was demonstrated by means of coating a near-UV LED (365 nm). This LED shows an e cacy of 1.3 lm.W1.
Chelawat, Hitesh. "Development of hybrid organic-inorganic light emitting diodes using conducting polymers deposited by oxidative chemical vapor deposition process". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59248.
Pełny tekst źródłaIncludes bibliographical references.
Difficulties with traditional methods of synthesis and film formation for conducting polymers, many of which are insoluble, motivate the development of CVD methods. Indeed, conjugated polymers with rigid linear backbones typically crystallize readily and overcoming the resultant heat of crystallization makes them difficult to dissolve. Poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were obtained through oxidative chemical vapor deposition (oCVD) by using a new oxidant- bromine. The use of bromine eliminates any post processing rinsing step required with other oxidants like iron chloride and hence makes the process completely dry. Accelerated aging experiments show longer retention of electrical conductivity for the PEDOT films obtained using bromine as the oxidant. Conductivities as high as 380 S/cm were obtained for PEDOT films deposited using bromine as the oxidant at 80 'C, which is significantly higher than that for PEDOT films deposited using iron chloride as the oxidant at the same temperature. Cross-sectional SEM of the PEDOT films deposited using bromine on silicon trench wafers demonstrates high conformal deposition of the films. All the results show the possibility of depositing highly conducting, conformal PEDOT films on any substrate including silicon, glass, paper, plastic. One of the many applications of conducting polymer is as hole-transport layer in light emitting diode. To be competitive in the LED market, improvements in hybrid-LED quantum efficiencies as well as demonstrations of long-lived HLED structures are necessary. In this work, we consider improvement in the stability of the HLED. The device fabricated can be configured as ITO/ Poly (EDOT-co-TAA)/CdSe (ZnS)/ Au. All the materials used in the device synthesis are stable in ambient conditions and all the synthesis steps on ITO substrate are done either in air or in very moderate pressure conditions. This significantly reduces the cost of the device fabrication by obviating the need of packaging layers and ultrahigh vacuum tools. The operating voltage as low as 4.3 V have been obtained for red-LEDs. We believe that with optimization of various layers in the device, further improvements can be made. For green LEDs we obtained the characteristic IV curve of a diode, but we still need to work on getting a functioning green LED.
by Hitesh Chelawat.
S.M.
Sit, Jon Wai Yu. "Growth and characterization of organic/inorganic thin films for photonic device applications". HKBU Institutional Repository, 2015. https://repository.hkbu.edu.hk/etd_oa/179.
Pełny tekst źródłaSahin, Tiras Kevser. "Magnetic field effect and other spectroscopies of organic semiconductor and hybrid organic-inorganic perovskite devices". Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6495.
Pełny tekst źródłaLeysour, de Rohello Erwan. "Synthèse et étude des propriétés luminescentes de composés carbodiimides en vue d’application comme luminophores pour diodes blanches". Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S062.
Pełny tekst źródłaThe role that nitrogen plays on the luminescent properties of luminescent centers (nephelauxetic effect, crystal field) has already been widely demonstrated in (oxy)nitride materials. This thesis work focuses on the search of new nitrogen-containing phosphors, i.e. inorganic carbodiimides, for WLED applications. Thus, a versatile synthesis method based on carbon nitride has been developed for the synthesis of various carbodiimide compounds doped with rare earth or transition metal ions. The structural and optical properties of SrCN2 :Eu2+ (λem = 620 nm ; red), CaCN2 :Mn2+ (λem = 680 nm ; red), CaCN2 :Ce3+ (λem = 462 nm ; blue) and ZnCN2 :Mn2+ (λem = 585 nm ; orange) compounds are discussed. The modulation of the emission from blue to red is made achiveable by Ce3+/Mn2+ co-doping in CaCN2. The intrinsic blue luminescence of ZnCN2 is also reported
Liu, Ying. "Piezo-phototronics: from experiments to theory". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54013.
Pełny tekst źródłaKsiążki na temat "Inorganic light-emitting diodes"
Subash, T. D., J. Ajayan i Wladek Grabinski. Organic and Inorganic Light Emitting Diodes. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003340577.
Pełny tekst źródłaZnO bao mo zhi bei ji qi guang, dian xing neng yan jiu. Shanghai Shi: Shanghai da xue chu ban she, 2010.
Znajdź pełny tekst źródłaPark, Nam-Gyu, i Hiroshi Segawa. Multifunctional Organic-Inorganic Halide Perovskite: Applications in Solar Cells, Light-Emitting Diodes, and Resistive Memory. Jenny Stanford Publishing, 2022.
Znajdź pełny tekst źródłaPark, Nam-Gyu, i Hiroshi Segawa. Multifunctional Organic-Inorganic Halide Perovskite: Applications in Solar Cells, Light-Emitting Diodes, and Resistive Memory. Jenny Stanford Publishing, 2022.
Znajdź pełny tekst źródłaPark, Nam-Gyu, i Hiroshi Segawa. Multifunctional Organic-Inorganic Halide Perovskite: Applications in Solar Cells, Light-Emitting Diodes, and Resistive Memory. Jenny Stanford Publishing, 2022.
Znajdź pełny tekst źródłaCzęści książek na temat "Inorganic light-emitting diodes"
Kim, Young-Hoon, Soyeong Ahn, Joo Sung Kim i Tae-Woo Lee. "Halide Perovskite Light-Emitting Diodes". W Multifunctional Organic-Inorganic Halide Perovskite, 187–220. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003275930-8.
Pełny tekst źródłaMorii, Katsuyuki, i Hirohiko Fukagawa. "Hybrid Organic-Inorganic Light-Emitting Diode". W Air-Stable Inverted Organic Light-Emitting Diodes, 5–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-18514-5_2.
Pełny tekst źródłaMuchahary, Deboraj, Sagar Bhattarai, Arvind Sharma i Ajay Kumar Mahato. "Fundamental Physics of Light Emitting Diodes". W Organic and Inorganic Light Emitting Diodes, 1–50. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003340577-1.
Pełny tekst źródłaManikandan, M., G. Dhivyasri, D. Nirmal, Joseph Anthony Prathap i Binola K. Jebalin. "Light Extraction Efficiency Improvement Techniques in Light-Emitting Diodes". W Organic and Inorganic Light Emitting Diodes, 117–32. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003340577-6.
Pełny tekst źródłaBhaskar, Seemesh, i Sai Sathish Ramamurthy. "Performance Enhancement of Light Emitting Radiating Dipoles (LERDs) Using Surface Plasmon-Coupled and Photonic Crystal-Coupled Emission Platforms". W Organic and Inorganic Light Emitting Diodes, 161–84. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003340577-8.
Pełny tekst źródłaRadhika Patnala, Tulasi, N. Hemalatha, Sankararao Majji i M. Sundar Rajan. "Physical Mechanisms That Limit the Reliability of LEDs". W Organic and Inorganic Light Emitting Diodes, 51–66. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003340577-2.
Pełny tekst źródłaSubramaniyam, Vinodhini, B. A. Saravanan i Moorthi Pichumani. "Scattering Effects on the Optical Performance of LEDs". W Organic and Inorganic Light Emitting Diodes, 67–89. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003340577-3.
Pełny tekst źródłaAjayan, J., i T. D. Subash. "Efficiency Enhancement Techniques in Flexible and Organic Light-Emitting Diodes". W Organic and Inorganic Light Emitting Diodes, 133–60. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003340577-7.
Pełny tekst źródłaMajidzadeh, Nesa, i Hossein Movla. "Challenges in Fabrication and Packaging of LEDs". W Organic and Inorganic Light Emitting Diodes, 91–105. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003340577-4.
Pełny tekst źródłaShalu, C. "Opportunities and Challenges in Flexible and Organic LED". W Organic and Inorganic Light Emitting Diodes, 107–16. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003340577-5.
Pełny tekst źródłaStreszczenia konferencji na temat "Inorganic light-emitting diodes"
Giebink, Noel C. "Toward organic-inorganic hybrid perovskite laser diodes (Conference Presentation)". W Organic Light Emitting Materials and Devices XXII, redaktorzy Franky So, Chihaya Adachi i Jang-Joo Kim. SPIE, 2018. http://dx.doi.org/10.1117/12.2318726.
Pełny tekst źródłaLee, Tae-Woo. "High-efficiency Organic-inorganic Perovskite Light-emitting Diodes". W Solid-State Lighting. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ssl.2016.ssm2c.3.
Pełny tekst źródłaChen, K. J., Y. C. Lai, B. C. Lin, C. C. Lin, S. H. Chiu, Z. Y. Tu, M. H. Shih i in. "Hybrid White Light-emitting Diodes by Organic-Inorganic materials". W CLEO: Applications and Technology. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_at.2015.jw2a.102.
Pełny tekst źródłaChen, Shuming. "Quantum dot light-emitting diodes with organic-inorganic hybrid charge transport layer (Conference Presentation)". W Organic and Hybrid Light Emitting Materials and Devices XXIII, redaktorzy Franky So, Chihaya Adachi i Jang-Joo Kim. SPIE, 2019. http://dx.doi.org/10.1117/12.2531777.
Pełny tekst źródłaAdhikari, Gopi C., Saroj Thapa, Hongyang Zhu i Peifen Zhu. "Modulation of optical properties of inorganic lead halide perovskites using magnesium and their applications in light-emitting diodes". W Light-Emitting Devices, Materials, and Applications XXV, redaktorzy Martin Strassburg, Jong Kyu Kim i Michael R. Krames. SPIE, 2021. http://dx.doi.org/10.1117/12.2577884.
Pełny tekst źródłaAmmermann, Dirk, Achim Böhler, Christoph Rompf i Wolfgang Kowalsky. "Double Heterostructure and Multiple Quantum Well Organic Light Emitting Diodes for Flat Panel Displays". W Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.tua.3.
Pełny tekst źródłaDalton, Larry R. "Organic Optical Materials: An Overview of Scientific Issues and Applications". W Solid State Lasers: Materials and Applications. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/sslma.1997.tha1.
Pełny tekst źródłaGu, E., A. MackIntosh, A. Kuhne, R. A. Pethrick, C. Belton, D. D. C. Bradley, H. x. Zhang i M. D. Dawson. "Hybrid inorganic/organic micro-structured light-emitting diodes produced by self-aligned direct writing". W 2006 IEEE LEOS Annual Meeting. IEEE, 2006. http://dx.doi.org/10.1109/leos.2006.278953.
Pełny tekst źródłaMatsushima, T., C. Qin, K. Goushi, F. Bencheikh, T. Komino, M. Leyden, A. S. D. Sandanayaka i C. Adachi. "Enhanced Electroluminescence from Organic Light-Emitting Diodes with an Organic-Inorganic Perovskite Host Layer". W 2019 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2019. http://dx.doi.org/10.7567/ssdm.2019.a-1-02.
Pełny tekst źródłaNakagawa, Ryo, Yusuke Jitsui i Naoki Ohtani. "Improvement of the EL efficiency of the inorganic-organic light-emitting diodes by Rubrene-doping". W 2014 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). IEEE, 2014. http://dx.doi.org/10.1109/am-fpd.2014.6867129.
Pełny tekst źródła