Artykuły w czasopismach na temat „Inhomogeneous materials”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Inhomogeneous materials.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Inhomogeneous materials”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Grimvall, G., i M. S�derberg. "Transport in macroscopically inhomogeneous materials". International Journal of Thermophysics 7, nr 1 (styczeń 1986): 207–11. http://dx.doi.org/10.1007/bf00503811.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Klemens, P. G. "Thermal conductivity of inhomogeneous materials". International Journal of Thermophysics 10, nr 6 (listopad 1989): 1213–19. http://dx.doi.org/10.1007/bf00500572.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Nan, Ce-Wen. "Physics of inhomogeneous inorganic materials". Progress in Materials Science 37, nr 1 (styczeń 1993): 1–116. http://dx.doi.org/10.1016/0079-6425(93)90004-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Pasternak, Viktoriya, Lyudmila Samchuk, Artem Ruban, Oleksandr Chernenko i Nataliia Morkovska. "Investigation of the Main Stages in Modeling Spherical Particles of Inhomogeneous Materials". Materials Science Forum 1068 (19.08.2022): 207–14. http://dx.doi.org/10.4028/p-9jq543.

Pełny tekst źródła
Streszczenie:
This scientific study deals with the main issues related to the process of filling inhomogeneous materials into a rectangular hopper. The article develops an algorithm for filling particles of structurally inhomogeneous materials. A micrograph of the structure of samples of inhomogeneous materials is presented. It was found that the structure of samples of heterogeneous materials consists of three layers: external, internal and impurities of various grinding aggregates. Based on microstructural analysis, the presence of particles of various shapes and sizes was justified. On the basis of which the main initial conditions for filling the package with spherical particles were described. The basic physical and mechanical properties of structurally inhomogeneous materials were studied using the obtained results. We also constructed an approximate dependence of porosity on the particle diameter of inhomogeneous materials.
Style APA, Harvard, Vancouver, ISO itp.
5

Mironov, Vladimir I., Olga A. Lukashuk i Dmitry A. Ogorelkov. "On Durability of Structurally Inhomogeneous Materials". Materials Science Forum 1031 (maj 2021): 24–30. http://dx.doi.org/10.4028/www.scientific.net/msf.1031.24.

Pełny tekst źródła
Streszczenie:
Numerical methods used to calculate strength are based on energy approaches and minimization of functionals of one type or another. Yet the model of a material is limited to stable processes of deformation. As a result, a considerable number of deformation properties related to realization of the softening stage in materials of structural elements remains unaccounted for. To describe fracture as a new phenomenon in the behavior of structures, one needs to apply newer experimental and calculational approaches. The article cites results of modelling and experimental notions on the stage of softening in materials and its role in determining their durability. It is proposed to define the durability of a structurally inhomogeneous material as its capacity of equilibrium deformation beyond its ultimate strength under specified loading conditions. That reflects nonlocality of criteria for the failure of the material, their dependence both on its own properties and the geometry of a structural element. Complete stress-strain diagrams for structural materials of various classes and examples on how the softening stage is realized in structural materials are given.
Style APA, Harvard, Vancouver, ISO itp.
6

Dyakonov, O. M. "Briquetting of structurally inhomogeneous porous materials". Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 65, nr 2 (7.07.2020): 205–14. http://dx.doi.org/10.29235/1561-8358-2020-65-2-205-214.

Pełny tekst źródła
Streszczenie:
The work is devoted to solving the axisymmetric problem of the theory of pressing porous bodies with practical application in the form of force calculation of metallurgical processes of briquetting small fractional bulk materials: powder, chip, granulated and other metalworking wastes. For such materials, the shape of the particles (structural elements) is not geometrically correct or generally definable. This was the basis for the decision to be based on the continual model of a porous body. As a result of bringing this model to a two-dimensional spatial model, a closed analytical solution was obtained by the method of jointly solving differential equilibrium equations and the Guber–Mises energy condition of plasticity. The following assumptions were adopted as working hypotheses: the normal radial stress is equal to the tangential one, the lateral pressure coefficient is equal to the relative density of the compact. Due to the fact that the problem is solved in a general form and in a general formulation, the solution itself should be considered as methodological for any axisymmetric loading scheme. The transcendental equations of the deformation compaction of a porous body are obtained both for an ideal pressing process and taking into account contact friction forces. As a result of the development of a method for solving these equations, the formulas for calculating the local characteristics of the stressed state of the pressing, as well as the integral parameters of the pressing process are derived: pressure, stress, and deformation work.
Style APA, Harvard, Vancouver, ISO itp.
7

Alshits, V. I., i H. O. K. Kirchner. "Cylindrically anisotropic, radially inhomogeneous elastic materials". Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 457, nr 2007 (8.03.2001): 671–93. http://dx.doi.org/10.1098/rspa.2000.0687.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Zhou, Q., Z. Bian i A. Shakouri. "Pulsed cooling of inhomogeneous thermoelectric materials". Journal of Physics D: Applied Physics 40, nr 14 (29.06.2007): 4376–81. http://dx.doi.org/10.1088/0022-3727/40/14/037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

HIGUCHI, Masahiro, Kyohei TAKEO, Harunobu NAGINO, Takuya MORIMOTO i Yoshinobu TANIGAWA. "OS0121 Plate Theories of inhomogeneous materials". Proceedings of the Materials and Mechanics Conference 2009 (2009): 305–7. http://dx.doi.org/10.1299/jsmemm.2009.305.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Zhu, S. B., J. Lee i G. W. Robinson. "Kinetic energy imbalance in inhomogeneous materials". Chemical Physics Letters 161, nr 3 (wrzesień 1989): 249–52. http://dx.doi.org/10.1016/s0009-2614(89)87069-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Hoff, Heinrich. "Asymmetrical heat conduction in inhomogeneous materials". Physica A: Statistical Mechanics and its Applications 131, nr 2 (czerwiec 1985): 449–64. http://dx.doi.org/10.1016/0378-4371(85)90008-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Kayuk, Ya F., i M. K. Shekera. "Reduced mechanical characteristics of inhomogeneous materials". Soviet Applied Mechanics 27, nr 5 (maj 1991): 501–7. http://dx.doi.org/10.1007/bf00887776.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Khmelevskaya, V. S., i V. G. Malynkin. "Radiation-induced inhomogeneous state of materials". Metal Science and Heat Treatment 42, nr 8 (sierpień 2000): 331–34. http://dx.doi.org/10.1007/bf02471310.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Kumar, Kuldeep, i Rajesh Kumar. "On Inhomogeneous Deformations in ES Materials". International Journal of Engineering Science 48, nr 4 (kwiecień 2010): 405–16. http://dx.doi.org/10.1016/j.ijengsci.2009.10.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Kharevych, Lily, Patrick Mullen, Houman Owhadi i Mathieu Desbrun. "Numerical coarsening of inhomogeneous elastic materials". ACM Transactions on Graphics 28, nr 3 (27.07.2009): 1–8. http://dx.doi.org/10.1145/1531326.1531357.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Svenson, O. M. "Nondestructive testing of highly inhomogeneous materials". Materials Science 32, nr 4 (lipiec 1996): 491–504. http://dx.doi.org/10.1007/bf02538978.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Axell, Jörgen, Johan Helsing i Göran Grimvall. "Joule heat distribution in inhomogeneous materials". Physica A: Statistical Mechanics and its Applications 157, nr 1 (maj 1989): 618. http://dx.doi.org/10.1016/0378-4371(89)90371-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Brice, David K. "Ion implantation distributions in inhomogeneous materials". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 17, nr 4 (listopad 1986): 289–99. http://dx.doi.org/10.1016/0168-583x(86)90114-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Gondzik, J., i H. Stachowiak. "Positron lifetime in inhomogeneous metallic materials". Crystal Research and Technology 22, nr 12 (grudzień 1987): 1511–14. http://dx.doi.org/10.1002/crat.2170221216.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Erokhin, Sergey, i Victor Levin. "Inhomogeneous creep equation for viscoelastic materials". E3S Web of Conferences 410 (2023): 03002. http://dx.doi.org/10.1051/e3sconf/202341003002.

Pełny tekst źródła
Streszczenie:
The paper consider an inhomogeneous creep equation arising from a generalized Voigt model containing a Riemann-Liouville fractional derivative of the order 0 < β < 1. The Laplace transform is used for the numerical solution. The obtained solutions are compared with experimental data of polymer concrete samples. On the basis of this comparison the conclusion about the adequacy of the numerical solution method is made, and estimates of the model parameters are given.
Style APA, Harvard, Vancouver, ISO itp.
21

Milton, Graeme W. "Analytic materials". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, nr 2195 (listopad 2016): 20160613. http://dx.doi.org/10.1098/rspa.2016.0613.

Pełny tekst źródła
Streszczenie:
The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p . If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p . For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90 ° rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.
Style APA, Harvard, Vancouver, ISO itp.
22

Tao, Xiang Hua, Jing Qing Huang i Ying Chun Cai. "Inverse Analysis for Inhomogeneous Dielectric Coefficient of Pavement Material Based on Genetic Algorithm". Applied Mechanics and Materials 438-439 (październik 2013): 430–35. http://dx.doi.org/10.4028/www.scientific.net/amm.438-439.430.

Pełny tekst źródła
Streszczenie:
The key of ground penetrating radars application lies in the calculation of dielectric coefficient. The pavement materials are inhomogeneous medium in fact, the particle surface can induce the scatter and diffraction of electromagnetic wave. The inhomogeneous dielectricity can change the characteristics of reflected wave. It may even cause background noise of reflected signal, which will lead to mistakes in signal interpretation. Therefore it is necessary to analyze the inhomogeneous dielectric coefficients by GPR. This paper proposes the solutions of inverse analysis for inhomogeneous dielectric coefficients of pavement materials used GPR data. Two examples are given to assess the validity of genetic algorithms in inversion of pavement materials inhomogeneous dielectricity. The results show that genetic algorithm can converge into true solutions well. The backcalculated inhomogeneous dielectric coefficients can help to evaluate pavement properties further.
Style APA, Harvard, Vancouver, ISO itp.
23

Budanov, V. E., N. L. Yevich i N. N. Suslov. "Permittivity Measurement Technique for Inhomogeneous Dielectric Materials". Telecommunications and Radio Engineering 65, nr 15 (2006): 1439–51. http://dx.doi.org/10.1615/telecomradeng.v65.i15.80.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Roganova, N. A., i G. Z. Sharafutdinov. "Identification of mechanical properties of inhomogeneous materials". Mechanics of Solids 47, nr 4 (lipiec 2012): 448–53. http://dx.doi.org/10.3103/s0025654412040097.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Wang, Xu, Dongxing Mao, Wuzhou Yu i Zaixiu Jiang. "Sound barriers from materials of inhomogeneous impedance". Journal of the Acoustical Society of America 137, nr 6 (czerwiec 2015): 3190–97. http://dx.doi.org/10.1121/1.4921279.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Elmaimouni, L., J. E. Lefebvre, A. Raherison i F. E. Ratolojanahary. "Acoustical Guided Waves in Inhomogeneous Cylindrical Materials". Ferroelectrics 372, nr 1 (14.11.2008): 115–23. http://dx.doi.org/10.1080/00150190802382074.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Crocker, John C., M. T. Valentine, Eric R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh i D. A. Weitz. "Two-Point Microrheology of Inhomogeneous Soft Materials". Physical Review Letters 85, nr 4 (24.07.2000): 888–91. http://dx.doi.org/10.1103/physrevlett.85.888.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Vislov, I. S., S. N. Kladiev, S. M. Slobodyan i A. M. Bogdan. "A Batch Feeder for Inhomogeneous Bulk Materials". IOP Conference Series: Materials Science and Engineering 124 (kwiecień 2016): 012033. http://dx.doi.org/10.1088/1757-899x/124/1/012033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Haddi, A., i D. Weichert. "Elastic-plastic J-integral in inhomogeneous materials". Computational Materials Science 8, nr 3 (lipiec 1997): 251–60. http://dx.doi.org/10.1016/s0927-0256(97)00008-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Bernabei, D., F. Ganovelli, N. Pietroni, P. Cignoni, S. Pattanaik i R. Scopigno. "Real-time single scattering inside inhomogeneous materials". Visual Computer 26, nr 6-8 (21.04.2010): 583–93. http://dx.doi.org/10.1007/s00371-010-0449-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Scibetta, M. "Master Curve analysis of potentially inhomogeneous materials". Engineering Fracture Mechanics 94 (listopad 2012): 56–70. http://dx.doi.org/10.1016/j.engfracmech.2012.07.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Kichigin, A. F., A. E. Kolosov, V. V. Klyavlin i V. G. Sidyachenko. "Probabilistic-geometric model of structurally inhomogeneous materials". Soviet Mining Science 24, nr 2 (marzec 1988): 87–94. http://dx.doi.org/10.1007/bf02497828.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Meister, J. J. "Ultrasonic methods in evaluation of inhomogeneous materials". Signal Processing 14, nr 3 (kwiecień 1988): 306. http://dx.doi.org/10.1016/0165-1684(88)90086-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Zhu, S. B., J. Lee i G. W. Robinson. "Non-Maxwell velocity distributions in inhomogeneous materials". Journal of Fusion Energy 9, nr 4 (grudzień 1990): 465–67. http://dx.doi.org/10.1007/bf01588279.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Maugin, Gérard A., Marcelo Epstein i Carmine Trimarco. "Pseudomomentum and material forces in inhomogeneous materials". International Journal of Solids and Structures 29, nr 14-15 (1992): 1889–900. http://dx.doi.org/10.1016/0020-7683(92)90180-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Furukawa, Akira, i Hajime Tanaka. "Inhomogeneous flow and fracture of glassy materials". Nature Materials 8, nr 7 (14.06.2009): 601–9. http://dx.doi.org/10.1038/nmat2468.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Kubicki, B. "About endurance limit of ductile inhomogeneous materials". Journal of Materials Science 31, nr 9 (1996): 2475–79. http://dx.doi.org/10.1007/bf01152964.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Maekawa, S., i J. Inoue. "Giant magneto-transport phenomena in inhomogeneous materials". Materials Science and Engineering: B 31, nr 1-2 (kwiecień 1995): 11–16. http://dx.doi.org/10.1016/0921-5107(94)08024-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Goldsmid, H. J., i J. W. Sharp. "The thermal conductivity of inhomogeneous thermoelectric materials". physica status solidi (b) 241, nr 11 (wrzesień 2004): 2571–74. http://dx.doi.org/10.1002/pssb.200402048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Kolednik, O., J. Predan, G. X. Shan, N. K. Simha i F. D. Fischer. "On the fracture behavior of inhomogeneous materials––A case study for elastically inhomogeneous bimaterials". International Journal of Solids and Structures 42, nr 2 (styczeń 2005): 605–20. http://dx.doi.org/10.1016/j.ijsolstr.2004.06.064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Wapenaar, Kees, i Evert Slob. "Reciprocity and Representations for Wave Fields in 3D Inhomogeneous Parity-Time Symmetric Materials". Symmetry 14, nr 11 (25.10.2022): 2236. http://dx.doi.org/10.3390/sym14112236.

Pełny tekst źródła
Streszczenie:
Inspired by recent developments in wave propagation and scattering experiments with parity-time (PT) symmetric materials, we discuss reciprocity and representation theorems for 3D inhomogeneous PT-symmetric materials and indicate some applications. We start with a unified matrix-vector wave equation which accounts for acoustic, quantum-mechanical, electromagnetic, elastodynamic, poroelastodynamic, piezoelectric and seismoelectric waves. Based on the symmetry properties of the operator matrix in this equation, we derive unified reciprocity theorems for wave fields in 3D arbitrary inhomogeneous media and 3D inhomogeneous media with PT-symmetry. These theorems form the basis for deriving unified wave field representations and relations between reflection and transmission responses in such media. Among the potential applications are interferometric Green’s matrix retrieval and Marchenko-type Green’s matrix retrieval in PT-symmetric materials.
Style APA, Harvard, Vancouver, ISO itp.
42

Zhao, Jing, Fei Zhu, Liyou Xu, Yong Tang i Sheng Li. "A homogenization method for nonlinear inhomogeneous elastic materials". Virtual Reality & Intelligent Hardware 3, nr 2 (kwiecień 2021): 156–70. http://dx.doi.org/10.1016/j.vrih.2021.01.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Molchanov, I. S., S. N. Chiu i S. A. Zuyev. "Design of inhomogeneous materials with given structural properties". Physical Review E 62, nr 4 (1.10.2000): 4544–52. http://dx.doi.org/10.1103/physreve.62.4544.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Arzamaskova, L. M., E. E. Evdokimov i O. V. Konovalov. "Research of Construction Elements of Structure-inhomogeneous Materials". IOP Conference Series: Materials Science and Engineering 463 (31.12.2018): 032074. http://dx.doi.org/10.1088/1757-899x/463/3/032074.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Jiang, Hai, Robert Penno, Krishna M. Pasala, Leo Kempel i Stephan Schneider. "Broadband Microstrip Leaky Wave Antenna With Inhomogeneous Materials". IEEE Transactions on Antennas and Propagation 57, nr 5 (maj 2009): 1558–62. http://dx.doi.org/10.1109/tap.2009.2016785.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Takamatsu, Hiroyuki, Shingo Sumie, Tsutomu Morimoto, Yutaka Kawata, Yoshiro Nishimoto, Takefumi Horiuchi, Hiroshi Nakayama, Takashi Kita i Taneo Nishino. "Theoretical Analysis of Photoacoustic Displacement for Inhomogeneous Materials". Japanese Journal of Applied Physics 33, Part 1, No. 10 (15.10.1994): 6032–38. http://dx.doi.org/10.1143/jjap.33.6032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Nan, Ce-Wen, i G. J. Weng. "Theoretical approach to effective electrostriction in inhomogeneous materials". Physical Review B 61, nr 1 (1.01.2000): 258–65. http://dx.doi.org/10.1103/physrevb.61.258.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Kadigrobov, A., R. I. Shekhter i M. Jonson. "Triplet superconducting proximity effect in inhomogeneous magnetic materials". Low Temperature Physics 27, nr 9 (wrzesień 2001): 760–66. http://dx.doi.org/10.1063/1.1401185.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Tosaki, Mitsuo, Daisuke Ohsawa i Yasuhito Isozumi. "Experimental energy straggling of protons in inhomogeneous materials". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 219-220 (czerwiec 2004): 241–45. http://dx.doi.org/10.1016/j.nimb.2004.01.061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Chiriţă, Stan, i Ionel–Dumitrel Ghiba. "Inhomogeneous plane waves in elastic materials with voids". Wave Motion 47, nr 6 (październik 2010): 333–42. http://dx.doi.org/10.1016/j.wavemoti.2010.01.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii