Artykuły w czasopismach na temat „Inhibitory synapse”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Inhibitory synapse”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Pettem, Katherine L., Daisaku Yokomaku, Hideto Takahashi, Yuan Ge i Ann Marie Craig. "Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development". Journal of Cell Biology 200, nr 3 (28.01.2013): 321–36. http://dx.doi.org/10.1083/jcb.201206028.
Pełny tekst źródłaDejanovic, Borislav, Tiffany Wu, Ming-Chi Tsai, David Graykowski, Vineela D. Gandham, Christopher M. Rose, Corey E. Bakalarski i in. "Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models". Nature Aging 2, nr 9 (20.09.2022): 837–50. http://dx.doi.org/10.1038/s43587-022-00281-1.
Pełny tekst źródłaHu, Xiaoge, Jian-hong Luo i Junyu Xu. "The Interplay between Synaptic Activity and Neuroligin Function in the CNS". BioMed Research International 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/498957.
Pełny tekst źródłaSuckow, Arthur T., Davide Comoletti, Megan A. Waldrop, Merrie Mosedale, Sonya Egodage, Palmer Taylor i Steven D. Chessler. "Expression of Neurexin, Neuroligin, and Their Cytoplasmic Binding Partners in the Pancreatic β-Cells and the Involvement of Neuroligin in Insulin Secretion". Endocrinology 149, nr 12 (28.08.2008): 6006–17. http://dx.doi.org/10.1210/en.2008-0274.
Pełny tekst źródłaOverstreet, Linda S., i Gary L. Westbrook. "Synapse Density Regulates Independence at Unitary Inhibitory Synapses". Journal of Neuroscience 23, nr 7 (1.04.2003): 2618–26. http://dx.doi.org/10.1523/jneurosci.23-07-02618.2003.
Pełny tekst źródłaHines, Pamela J. "Inhibitory synapse specificity". Science 363, nr 6425 (24.01.2019): 360.6–361. http://dx.doi.org/10.1126/science.363.6425.360-f.
Pełny tekst źródłaJasinska, Malgorzata, Ewa Siucinska, Ewa Jasek, Jan A. Litwin, Elzbieta Pyza i Malgorzata Kossut. "Effect of Associative Learning on Memory Spine Formation in Mouse Barrel Cortex". Neural Plasticity 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/9828517.
Pełny tekst źródłaJasinska, Malgorzata, Ewa Siucinska, Stansislaw Glazewski, Elzbieta Pyza i And Kossut. "Characterization and plasticity of the double synapse spines in the barrel cortex of the mouse". Acta Neurobiologiae Experimentalis 66, nr 2 (30.06.2006): 99–104. http://dx.doi.org/10.55782/ane-2006-1595.
Pełny tekst źródłaWilson, Emily S., i Karen Newell-Litwa. "Stem cell models of human synapse development and degeneration". Molecular Biology of the Cell 29, nr 24 (26.11.2018): 2913–21. http://dx.doi.org/10.1091/mbc.e18-04-0222.
Pełny tekst źródłaBarreira da Silva, Rosa, Claudine Graf i Christian Münz. "Cytoskeletal stabilization of inhibitory interactions in immunologic synapses of mature human dendritic cells with natural killer cells". Blood 118, nr 25 (15.12.2011): 6487–98. http://dx.doi.org/10.1182/blood-2011-07-366328.
Pełny tekst źródłaTreanor, Bebhinn, Peter M. P. Lanigan, Sunil Kumar, Chris Dunsby, Ian Munro, Egidijus Auksorius, Fiona J. Culley i in. "Microclusters of inhibitory killer immunoglobulin–like receptor signaling at natural killer cell immunological synapses". Journal of Cell Biology 174, nr 1 (26.06.2006): 153–61. http://dx.doi.org/10.1083/jcb.200601108.
Pełny tekst źródłaTakesian, Anne E., Vibhakar C. Kotak i Dan H. Sanes. "Age-dependent effect of hearing loss on cortical inhibitory synapse function". Journal of Neurophysiology 107, nr 3 (luty 2012): 937–47. http://dx.doi.org/10.1152/jn.00515.2011.
Pełny tekst źródłaLegendre, P. "The glycinergic inhibitory synapse". Cellular and Molecular Life Sciences 58, nr 5 (maj 2001): 760–93. http://dx.doi.org/10.1007/pl00000899.
Pełny tekst źródłaFlores, Carmen E., Irina Nikonenko, Pablo Mendez, Jean-Marc Fritschy, Shiva K. Tyagarajan i Dominique Muller. "Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation". Proceedings of the National Academy of Sciences 112, nr 1 (22.12.2014): E65—E72. http://dx.doi.org/10.1073/pnas.1411170112.
Pełny tekst źródłaHolmes, William R., i William B. Levy. "Quantifying the Role of Inhibition in Associative Long-Term Potentiation in Dentate Granule Cells With Computational Models". Journal of Neurophysiology 78, nr 1 (1.07.1997): 103–16. http://dx.doi.org/10.1152/jn.1997.78.1.103.
Pełny tekst źródłaRamaglia, Valeria, Mohit Dubey, M. Alfonso Malpede, Naomi Petersen, Sharon I. de Vries, Shanzeh M. Ahmed, Dennis S. W. Lee i in. "Complement-associated loss of CA2 inhibitory synapses in the demyelinated hippocampus impairs memory". Acta Neuropathologica 142, nr 4 (25.06.2021): 643–67. http://dx.doi.org/10.1007/s00401-021-02338-8.
Pełny tekst źródłaSu, Jianmin, Jiang Chen, Kumiko Lippold, Aboozar Monavarfeshani, Gabriela Lizana Carrillo, Rachel Jenkins i Michael A. Fox. "Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex". Journal of Cell Biology 212, nr 6 (14.03.2016): 721–36. http://dx.doi.org/10.1083/jcb.201509085.
Pełny tekst źródłaWoodin, Melanie A., Toshiro Hamakawa, Mayumi Takasaki, Ken Lukowiak i Naweed I. Syed. "Trophic Factor-Induced Plasticity of Synaptic Connections Between Identified Lymnaea Neurons". Learning & Memory 6, nr 3 (1.05.1999): 307–16. http://dx.doi.org/10.1101/lm.6.3.307.
Pełny tekst źródłaHoon, Mrinalini, Raunak Sinha, Haruhisa Okawa, Sachihiro C. Suzuki, Arlene A. Hirano, Nicholas Brecha, Fred Rieke i Rachel O. L. Wong. "Neurotransmission plays contrasting roles in the maturation of inhibitory synapses on axons and dendrites of retinal bipolar cells". Proceedings of the National Academy of Sciences 112, nr 41 (29.09.2015): 12840–45. http://dx.doi.org/10.1073/pnas.1510483112.
Pełny tekst źródłaELMARIAH, SARINA B., ETHAN G. HUGHES, EUN JOO OH i RITA J. BALICE-GORDON. "Neurotrophin signaling among neurons and glia during formation of tripartite synapses". Neuron Glia Biology 1, nr 4 (listopad 2004): 339–49. http://dx.doi.org/10.1017/s1740925x05000189.
Pełny tekst źródłaJasinska, Malgorzata, Anna Grzegorczyk, Ewa Jasek, Jan Litwin, Malgorzata Kossut, Grazyna Barbacka-Surowiak i Elzbieta Pyza. "Daily rhythm of synapse turnover in mouse somatosensory cortex". Acta Neurobiologiae Experimentalis 74, nr 1 (31.03.2014): 104–10. http://dx.doi.org/10.55782/ane-2014-1977.
Pełny tekst źródłaKo, Jaewon, Gilberto J. Soler-Llavina, Marc V. Fuccillo, Robert C. Malenka i Thomas C. Südhof. "Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons". Journal of Cell Biology 194, nr 2 (25.07.2011): 323–34. http://dx.doi.org/10.1083/jcb.201101072.
Pełny tekst źródłaWoo, Jooyeon, Seok-Kyu Kwon, Jungyong Nam, Seungwon Choi, Hideto Takahashi, Dilja Krueger, Joohyun Park i in. "The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development". Journal of Cell Biology 201, nr 6 (10.06.2013): 929–44. http://dx.doi.org/10.1083/jcb.201209132.
Pełny tekst źródłaLevinson, Joshua N., i Alaa El-Husseini. "New Players Tip the Scales in the Balance between Excitatory and Inhibitory Synapses". Molecular Pain 1 (1.01.2005): 1744–8069. http://dx.doi.org/10.1186/1744-8069-1-12.
Pełny tekst źródłaThakar, Sonal, Liqing Wang, Ting Yu, Mao Ye, Keisuke Onishi, John Scott, Jiaxuan Qi i in. "Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation". Proceedings of the National Academy of Sciences 114, nr 4 (5.01.2017): E610—E618. http://dx.doi.org/10.1073/pnas.1612062114.
Pełny tekst źródłaLee, Sang-Eun, Yoonju Kim, Jeong-Kyu Han, Hoyong Park, Unghwi Lee, Myeongsu Na, Soomin Jeong, ChiHye Chung, Gianluca Cestra i Sunghoe Chang. "nArgBP2 regulates excitatory synapse formation by controlling dendritic spine morphology". Proceedings of the National Academy of Sciences 113, nr 24 (25.05.2016): 6749–54. http://dx.doi.org/10.1073/pnas.1600944113.
Pełny tekst źródłaOjima, Daiki, Yoko Tominaga, Takashi Kubota, Atsushi Tada, Hiroo Takahashi, Yasushi Kishimoto, Takashi Tominaga i Tohru Yamamoto. "Impaired Hippocampal Long-Term Potentiation and Memory Deficits upon Haploinsufficiency of MDGA1 Can Be Rescued by Acute Administration of d-Cycloserine". International Journal of Molecular Sciences 25, nr 17 (6.09.2024): 9674. http://dx.doi.org/10.3390/ijms25179674.
Pełny tekst źródłaApollonio, Benedetta, Mariam Fanous, Mohamed-Reda Benmebarek, Stephen Devereux, Patrick Hagner, Michael Pourdehnad, Anita K. Gandhi, Piers E. Patten i Alan G. Ramsay. "CC-122 Repairs T Cell Activation in Chronic Lymphocytic Leukemia That Results in a Concomitant Increase in PD-1:PD-L1 and CTLA-4 Immune Checkpoint Expression at the Immunological Synapse". Blood 126, nr 23 (3.12.2015): 1738. http://dx.doi.org/10.1182/blood.v126.23.1738.1738.
Pełny tekst źródłaIshibashi, Masaru, Kiyoshi Egawa i Atsuo Fukuda. "Diverse Actions of Astrocytes in GABAergic Signaling". International Journal of Molecular Sciences 20, nr 12 (18.06.2019): 2964. http://dx.doi.org/10.3390/ijms20122964.
Pełny tekst źródłaZhang, Lulu, Yongzhi Zhang, Furong Liu, Qingyuan Chen, Yangbo Lian i Quanlong Ma. "On-Chip Photonic Synapses with All-Optical Memory and Neural Network Computation". Micromachines 14, nr 1 (27.12.2022): 74. http://dx.doi.org/10.3390/mi14010074.
Pełny tekst źródłaWichmann, Carolin, i Thomas Kuner. "Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences". Physiological Reviews 102, nr 1 (1.01.2022): 269–318. http://dx.doi.org/10.1152/physrev.00039.2020.
Pełny tekst źródłaKuljis, Dika A., Kristina D. Micheva, Ajit Ray, Waja Wegner, Ryan Bowman, Daniel V. Madison, Katrin I. Willig i Alison L. Barth. "Gephyrin-Lacking PV Synapses on Neocortical Pyramidal Neurons". International Journal of Molecular Sciences 22, nr 18 (17.09.2021): 10032. http://dx.doi.org/10.3390/ijms221810032.
Pełny tekst źródłaGonzalez-Burgos, Guillermo, Diana C. Rotaru, Aleksey V. Zaitsev, Nadezhda V. Povysheva i David A. Lewis. "GABA Transporter GAT1 Prevents Spillover at Proximal and Distal GABA Synapses Onto Primate Prefrontal Cortex Neurons". Journal of Neurophysiology 101, nr 2 (luty 2009): 533–47. http://dx.doi.org/10.1152/jn.91161.2008.
Pełny tekst źródłaHarrison, John M., Richard G. Allen, Michael J. Pellegrino, John T. Williams i Olivier J. Manzoni. "Chronic Morphine Treatment Alters Endogenous Opioid Control of Hippocampal Mossy Fiber Synaptic Transmission". Journal of Neurophysiology 87, nr 5 (1.05.2002): 2464–70. http://dx.doi.org/10.1152/jn.2002.87.5.2464.
Pełny tekst źródłaQian, N., i T. J. Sejnowski. "When is an inhibitory synapse effective?" Proceedings of the National Academy of Sciences 87, nr 20 (1.10.1990): 8145–49. http://dx.doi.org/10.1073/pnas.87.20.8145.
Pełny tekst źródłaPEREIRA, T., M. S. BAPTISTA, J. KURTHS i M. B. REYES. "ONSET OF PHASE SYNCHRONIZATION IN NEURONS WITH CHEMICAL SYNAPSE". International Journal of Bifurcation and Chaos 17, nr 10 (październik 2007): 3545–49. http://dx.doi.org/10.1142/s0218127407019342.
Pełny tekst źródłaGrimes, William N., Jun Zhang, Hua Tian, Cole W. Graydon, Mrinalini Hoon, Fred Rieke i Jeffrey S. Diamond. "Complex inhibitory microcircuitry regulates retinal signaling near visual threshold". Journal of Neurophysiology 114, nr 1 (lipiec 2015): 341–53. http://dx.doi.org/10.1152/jn.00017.2015.
Pełny tekst źródłaZhao, Qing-Tai, Fengben Xi, Yi Han, Andreas Grenmyr, Jin Hee Bae i Detlev Gruetzmacher. "Ferroelectric Devices for Neuromorphic Computing". ECS Meeting Abstracts MA2022-02, nr 32 (9.10.2022): 1183. http://dx.doi.org/10.1149/ma2022-02321183mtgabs.
Pełny tekst źródłaFenyves, Bánk G., Gábor S. Szilágyi, Zsolt Vassy, Csaba Sőti i Peter Csermely. "Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network". PLOS Computational Biology 16, nr 12 (21.12.2020): e1007974. http://dx.doi.org/10.1371/journal.pcbi.1007974.
Pełny tekst źródłaLee, Seong-Eun, i Gum Hwa Lee. "Reelin Affects Signaling Pathways of a Group of Inhibitory Neurons and the Development of Inhibitory Synapses in Primary Neurons". International Journal of Molecular Sciences 22, nr 14 (13.07.2021): 7510. http://dx.doi.org/10.3390/ijms22147510.
Pełny tekst źródłaBao, Shaowen, Lu Chen, Xiaoxi Qiao i Richard F. Thompson. "Transgenic Brain-Derived Neurotrophic Factor Modulates a Developing Cerebellar Inhibitory Synapse". Learning & Memory 6, nr 3 (1.05.1999): 276–83. http://dx.doi.org/10.1101/lm.6.3.276.
Pełny tekst źródłaGardner, D. "Sets of synaptic currents paired by common presynaptic or postsynaptic neurons". Journal of Neurophysiology 61, nr 4 (1.04.1989): 845–53. http://dx.doi.org/10.1152/jn.1989.61.4.845.
Pełny tekst źródłaAli, Heba, Lena Marth i Dilja Krueger-Burg. "Neuroligin-2 as a central organizer of inhibitory synapses in health and disease". Science Signaling 13, nr 663 (22.12.2020): eabd8379. http://dx.doi.org/10.1126/scisignal.abd8379.
Pełny tekst źródłaUnda, Brianna K., Vickie Kwan i Karun K. Singh. "Neuregulin-1 Regulates Cortical Inhibitory Neuron Dendrite and Synapse Growth through DISC1". Neural Plasticity 2016 (2016): 1–15. http://dx.doi.org/10.1155/2016/7694385.
Pełny tekst źródłaTate, Kinsley, Brenna Kirk, Alisia Tseng, Abigail Ulffers i Karen Litwa. "Effects of the Selective Serotonin Reuptake Inhibitor Fluoxetine on Developing Neural Circuits in a Model of the Human Fetal Cortex". International Journal of Molecular Sciences 22, nr 19 (28.09.2021): 10457. http://dx.doi.org/10.3390/ijms221910457.
Pełny tekst źródłaRYBICKA, KRYSTYNA KIELAN, i SUSAN B. UDIN. "Connections of contralaterally projecting isthmotectal axons and GABA-immunoreactive neurons in Xenopus tectum: An ultrastructural study". Visual Neuroscience 22, nr 3 (maj 2005): 305–15. http://dx.doi.org/10.1017/s0952523805223064.
Pełny tekst źródłaLevinson, Joshua N., Nadège Chéry, Kun Huang, Tak Pan Wong, Kimberly Gerrow, Rujun Kang, Oliver Prange, Yu Tian Wang i Alaa El-Husseini. "Neuroligins Mediate Excitatory and Inhibitory Synapse Formation". Journal of Biological Chemistry 280, nr 17 (21.02.2005): 17312–19. http://dx.doi.org/10.1074/jbc.m413812200.
Pełny tekst źródłaSakimoto, Yuya, Paw Min-Thein Oo, Makoto Goshima, Itsuki Kanehisa, Yutaro Tsukada i Dai Mitsushima. "Significance of GABAA Receptor for Cognitive Function and Hippocampal Pathology". International Journal of Molecular Sciences 22, nr 22 (18.11.2021): 12456. http://dx.doi.org/10.3390/ijms222212456.
Pełny tekst źródłaNiraula, Suraj, Shirley ShiDu Yan i Jaichandar Subramanian. "Amyloid pathology impairs experience-dependent inhibitory synaptic plasticity". Journal of Neuroscience, 27.11.2023, JN—RM—0702–23. http://dx.doi.org/10.1523/jneurosci.0702-23.2023.
Pełny tekst źródłaBoxer, Emma E., i Jason Aoto. "Neurexins and their ligands at inhibitory synapses". Frontiers in Synaptic Neuroscience 14 (21.12.2022). http://dx.doi.org/10.3389/fnsyn.2022.1087238.
Pełny tekst źródła