Rozprawy doktorskie na temat „Ingénierie tissu osseux”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 39 najlepszych rozpraw doktorskich naukowych na temat „Ingénierie tissu osseux”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Grellier, Adeline Maritie. "La communication ostéo-endothéliale : application en ingénierie du tissu osseux". Bordeaux 2, 2008. http://www.theses.fr/2008BOR21560.
Pełny tekst źródłaBone development and remodelling are dependant on a tight cell cooperation between osteoblastic and osteoclastic cell types, responsible for bone formation and degradation, respectively. Angiogenesis is also a key process involved in these mechanisms and cell communication between osseous and endothelial cells is fundamental This work aims to study the cell communication between human osteoprogenitors (HOPs) arising from bone marrow and human endothelial cells (human umbilical cord endothelial cells : HUVECs). This osteo-endothelial communication was analysed using a well defined in vitro co-culture model in 2D but also into a 3D system into alginate microsphères which were then implanted in vivo in a bone defect in nude mice. In a first part, the HOPs were submitted to a mechanical stress which is an important parameter for the physiology of bone. Their ability to regulate their phenotype was demonstrated under shear stress. In co-culture wuth HUVECs, the phenotype was regulated and VEGF (vascular endothelial growth factor seems to be involved in this regulation. The endothelial phenotype was also regulated in co-culture since HUVECs migration led to a tubular-like cell rearrangement. Into alginate microspheres cultured in vitro, the HUVECs stimulated the osteoblastic phenotype of HOPs. Moreover, after implantation in a bone defect in vivo, the HUVECs enhanced the HOP-induced mineralization. This work shows that the cells are able to communicate and seems promising for the development of new tissue engineering strategies
Fénelon, Mathilde. "La MAH en ingénierie tissulaire : application à la régénération du tissu osseux". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0241.
Pełny tekst źródłaGuided bone regeneration (GBR) is commonly used to repair damaged bone. GBR is based on the application of a membrane which will act as a physical barrier to isolate the intended bone-healing space. The development of bioactive membranes has been suggested to overcome some limitations of the currently used membrane. Due to its biological properties, the human amniotic membrane (HAM) is a new biological membrane option for GBR. This study aimed at investigating the most suitable conditions to use HAM for GBR. First, the influence of both HAM sides and the impact of cryopreservation were studied. Then, a new decellularization process of HAM, that is simple and reproducible, has been developed. In a third part, bone regeneration of non-critical and critical sized defects depending on the preservation method of HAM was assessed in rodents. Results showed that neither stem cells found in HAM, nor the HAM layer used to cover the defect had an influence on its potential for bone regeneration. The most promising results were achieved with the decellularized/lyophilized HAM for the field of bone regeneration
Maisani, Mathieu. "Conception et développement d’hydrogels pour l’ingénierie tissulaire appliquée au tissu osseux". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0667/document.
Pełny tekst źródłaNew strategies to overcome the clinical limitations of current techniques for bone defect filling and regeneration has led to the involvement of bone tissue engineering. Indeed, strategies based on tissue engineering techniques seem to be an alternative to the use of grafts and thus to defeat their limits. The approach employed in this thesis consists in development and use of hydrogels as scaffold materials for bone defect filling and regeneration. There are many approaches that also use hydrogels, each one with its advantages and limitations. In this context, our work consisted in the use of a non-polymeric hydrogel as basic material in the development of strategies for bone tissue engineering. Briefly, several cell types are present within bone tissue and will participate in the processes of bone formation and regeneration. The objective of our strategies was the contribution of exogenous stem cells and then their differentiation into osteogenic cells or the recruitment and differentiation of the host cells into osteogenic cells within the material. The GNF gel was used as a three-dimensional matrix considering its properties of injectability, gelation in the absence of toxic crosslinking agent and its osteoinductive potential. The goal was to develop strategies for bone tissue engineering by combining the GNF gel with a natural matrix of cellular collagen or bioactive molecules to promote the regeneration of bone lesions. This work allowed to develop and characterize strategies relevant to the regeneration of bone lesions based on the use of hydrogels
Babilotte, Joanna. "BioFabrication par assemblage couche par couche pour l’ingénierie du Tissu Osseux". Thesis, Bordeaux, 2021. http://www.theses.fr/2021BORD0048.
Pełny tekst źródłaIn several clinical cases, dental implant placement can be hindered if the alveolar bone volume is limited. Current surgical methods for alveolar bone regeneration are not fully satisfying, and more reliable methods to regenerate bone is needed. Several biomaterials for bone substitution are available. However, they do not possess all the necessary properties for complete bone regeneration, as they lack osteoinductive and osteogenic potential.Tissue engineering can provide solutions for current issues in bone reconstruction. Tissue engineering strategies combine engineered scaffold with cells and suitable biochemical soluble factors. To produce the scaffold several techniques are available. These last years rapid prototyping technologies gained a huge interest, as they offer reproducibility and important resolution. The current issues remaining to produce living tissue constructs by bone tissue engineering techniques are related to cell seeding inside the macroporous scaffold. The conventional approach involves seeding cells onto a macroporous scaffold and expects cell colonization to form composite tissue constructs. Many limitations have been observed using this approach, due to slow vascularization, limited diffusion of nutrients, low cell density and non-uniform cell distribution.This project aims to address the limitations of scaffold-based bone tissue engineering, by organizing osteoprogenitor cells inside the scaffold. Based on previous results, we choose to use a layer-by-layer approach. This layer-by-layer fabrication method, also called “sandwich” in this work, should favor cell-material interaction and facilitate the maturation of these constructs. Finally, the amount and quality of tissue regenerated should be enhanced.The first part of the project consisted in the fabrication of scaffolds membranes. We have developed a new material, made of medical-grade poly(lactic-co-glycolic) acid (PLGA) mixed with hydroxyapatite nanoparticles (nHA), in the shape of a filament for 3D printing by Fused Deposition Modelling (FDM). PLGA was chosen for its biodegradation rate and its mechanical properties close to human cortical bone. Nanoparticles of HA were included to improve the bioactivity of the material for bone tissue engineering applications. Then, these materials were characterized for mechanical and physico-chemical properties before in vitro and in vivo studies. In these parts, we used the stromal vascular fraction of adipose tissue, to be closer to a potential clinical translation. The survival, proliferation and differentiation of the cells were evaluated. Finally, bone regeneration was observed after implantation of the constructs in a rat bone calvaria defect model
Catros, Sylvain. "Etude de la Micro-Impression d'Eléments Biologiques par Laser pour l'Ingénierie du Tissu Osseux". Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14108/document.
Pełny tekst źródłaBone Tissue Engineering is a multidisciplinary field which aims to produce artificial tissues for regenerative medicine. The purpose of this work was to produce three-dimensional bone substitute using a laser-assisted bioprinting (LAB) workstation developped in the laboratory INSERM U577 (TEAL Project: Tissue Engineering Assisted by Laser). The first step of the work consisted in the synthesis of specific materials for LAB and in the characterization of their biological and physico-chemical properties. We have prepared a nano-hydroxyapatite bioink, human cells bioinks and hydrogels bioinks. Then, three-dimensional materials have been prepared using LAB and have been implanted in vivo in mice. The results have shown that Laser Assisted Bioprinting is an efficient method fo patterning 3-D materials using biolgical elements
Hamdan, Ahmad. "Effets de dérivés sanguins sur le comportement de cellules ostéogéniques en culture : applications en ingénierie tissulaire osseuse". Paris 7, 2009. http://www.theses.fr/2009PA07G001.
Pełny tekst źródłaTissue engineering is a new domain developed in the aim of restoring, replacing or maintaining biological functions and tissue integrity. H implies the seeding of stem cells on 3D scaffolds in the presence of proper signaling molecules to promote cellular activity. The use of autologous products is preferred, when possible, in order to avoid ail risk associated with the use of allogenous or xenogenous products. Blood derivatives represent a potential autologous source for growth factors as well as other moiecules that couid be used in tissue engineering. Our objective was to evaluate, in an in vitro model, the effects of 2 blood derivatives on the behavior of rat calvaria osteoblastic cells. In the first part, we evaluated the effects of a homologous serum on osteoblastic ce11 proliferation and differentiation. In the second part of this work, we studied the in vitro effects of a new 3D scaffold of blood origin, globin, on osteoblastic cells. Our results show that these 2 blood derivatives are capable of stimulating osteoblastic cell activity and could find, in the future, clinical applications in the field of human bone tissue engineering
Barou, Carole. "Conception d'un ciment à base de phosphates de calcium pour la reconstruction osseuse et la libération de médicaments". Electronic Thesis or Diss., Montpellier, Ecole nationale supérieure de chimie, 2022. http://www.theses.fr/2022ENCM0019.
Pełny tekst źródłaThe treatment of bone is a challenge due to the difficulty that has the bone to repair itself. Several surgical situations sometimes require the application of auto- and allografts. Autologous bone grafting is the gold-standard treatment for bone reconstruction as it is the only that can provide osteoinductive growth factors, osteogenic cells and osteoconductive scaffold. These procedures present many limitations including donor site morbidity, increased operative time and providing insufficient quantity or quality. There is therefore a need to develop novel therapeutic strategies able to exploit the natural regenerative potential of bone and that can be delivered in a less invasive manner. Among the materials studied for the development of novel scaffolds, calcium phosphate cements provide many advantages due to its biological performances, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells. The aim of this thesis is the development and characterization of novel calcium phosphate based cements for bone regeneration. Our goal is to develop new original processes for the development of injectable scaffolds. The major advantage of such structures lies in the perfect biocompatibility with the mechanical properties similar to those of bone
Realista, Coelho Dos Santos Pedrosa Catarina. "Nanotopographies bioactives pour le contrôle de la différenciation des cellules souches mésenchymateuses pour des applications en ingénierie de tissu osseux". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0319/document.
Pełny tekst źródłaNanotopography with length scales of the order of extracellular matrix elements offers the possibility of regulating cell behavior. Investigation of the impact of nanotopography on cell response has been limited by inability to precisely control geometries, especially at high spatial resolutions, and across practically large areas. This work allowed the fabrication of well-controlled and periodic nanopillar arrays of silicon to investigate their impact on osteogenic differentiation of human mesenchymal stem cells (hMSCs). Silicon nanopillar arrays with critical dimensions in the range of 40-200 nm, exhibiting standard deviations below 15% across full wafers were realized using self-assembly of block copolymer colloids. To investigate if modifications of surface chemistry could further improve the modulation of hMSC differentiation, mimetic peptides were grafted on the fabricated nanoarrays. A peptide known for its ability to ameliorate cell adhesion (RGD peptide), a synthetic peptide able to enhance osteogenesis (BMP-2 mimetic peptide), and a combination or both molecules were covalently grafted on the nanostructures.Immunofluorescence and quantitative polymerase chain reaction (RT-qPCR) measurements reveal clear dependence of osteogenic differentiation of hMSCs on the diameter and periodicity of the arrays. Moreover, the differentiation of hMSCs was found to be dependent on the age of the donor. Surface functionalization allowed additional enhancement of the expression of osteogenic markers, in particular when RGD peptide and BMP-2 mimetic peptide were co-immobilized. These findings can contribute for the development of personalized treatments of bone diseases, namely novel implant nanostructuring depending on patient age
Ziane, Sophia. "Développement et caractérisation d'un hydrogel thérapeutique pour la régénération du tissu osseux". Thesis, Bordeaux 2, 2012. http://www.theses.fr/2012BOR21930/document.
Pełny tekst źródłaBone tissue is characterized by its mineralized matrix which is subject to formation and resorption activities ensuring its renewal and remodeling throughout the life. In case of damage, the bone can repair itself naturally to restore its integrity and its physical properties. Nevertheless, some pathologies or surgical procedures can lead to massive loss of bone and the natural process of self-repair is insufficient. First line, the bone graft is considered (autograft and allograft), however, due to reduced availability and risks of rejection and transmission of infectious agents, this technique is not feasible in all clinical situations. The surgeon can then make use of osteoconductive biomaterials but these are only usable in the case of filling of small defects because they are simply passive scaffold for bone formation. These limits may be exceeded through the concept of tissue enginee- ring, designing innovative biomaterials with high osteogenic power conferred by particular growth factors or osteoprogenitor cells. In our work we seek to develop a new product of tissue engineering to repair bone defects. The proposed strategy is based on the combination of a three-dimensional scaffold and adult stem cells derived from human adipose tissue (ASC). The originality of this system comes from the three-dimensional matrix, which is a thermosensitive hydrogel composed of synthetic monomeric Glycosyl-Nucleoside-Fluorinated (GNF) low molecular weight. In the field of bone regeneration, hydrogels are generally used as cellularized matrix molecules associated with osteogenic (BMP2, Beta-Glycerophosphate) or ions (Calcium : Ca2+, Phosphate : PO42-) to allow osteoblast differentiation of cells encapsulated in the gel. However, in our work, we have not used these osteogenic factors. Our study revealed that the hydrogel of GNF has the essential criteria to be used in clinical practice : non-toxicity, biocompatibility, biodegradability, injectability and biointegration. Injections of gel/ASC complex performed in animal ectopic site have showed that the gel is formed in situ within 20 minutes and encapsulated cells survived and proliferated for several months. In situ, ASC were differentiated into mature osteoblasts expressing alkaline phosphatase and osteocalcin and synthesizing an extracellular matrix rich in calcium phosphate. So, this work has allowed the development of an innovative product for tissue engineering, combining a three-dimensional scaffold, the GNF based hydrogel, a cellular component, the ASC. This cellularized matrix appears promising as injection system for clinical applications of bone regeneration
Boukhechba, Florian. "Développement de modèles pour l'étude de la formation osseuse en culture tridimensionnelle et en ingénierie tissulaire osseuse". Nice, 2009. http://www.theses.fr/2009NICE4086.
Pełny tekst źródłaThree-dimensional culture (3D) of bone cells and bone tissue engineering are both based on the use of scaffolds to convey osteogenic cells and obtain in vitro and in vivo bone formation respectively. 3D culture is an important field in cell biology, dedicated to reduce the gap between two-dimensional culture and complex tissue architecture. Many works have described various scaffolds as support for the 3D culture of bone cells but in two studies only the presence of osteocyte-like cells have been detected after very long periods of culture. I have engineered an original model of 3D culture in which human primary osteoblasts are seeded within the interspace of calibrated biphasic calcium phosphate particles (BCP). This system results, after one week, in the development of an osteoid matrix and the spontaneous differentiation of the osteoblasts in osteocytes. This model of primary osteocyte differentiation in 3D is a new tool to gain insights into the biology of osteocytes, which compose over 90-95% of bone cells but are difficult to study due to their accessibility and the very rare models available in vitro. The aim of bone tissue engineering is to regenerate the bone stock through a combination of scaffolds, osteogenic factors and / or osteogenic cells. The majority of the studied in this field advocates the use of mesenchymal stromal cells (MSC) but the mechanism of action of these cells is still poorly documented. Based on the use of BCP particles, I have participated to the development of a new bone substitute, which has been patented in our laboratory. I have used this new biomaterial as a vehicle for mouse MSC in a model of ectopic bone formation. Using a method of quantitative tracking of the implanted cells, I have shown that the implanted MSC disappeared very quickly from the implants whereas host cells were progressively recruited suggesting that host cells are responsible for the bone formation. We have concluded that, in this model, MSC play a chemotactic function towards host cells. A preliminary study of the putative molecules involved in this phenomenon was performed with the aim of proposing a new
Guerrero, Julien. "Devenir des cellules souches mésenchymateuses humaines dans un environnement tridimensionnel : application à l’ingénierie du tissu osseux". Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0200/document.
Pełny tekst źródłaBone tissue engineering aims to resolve the existing limitations of boneregeneration methods. One of the proposed strategies consists on the association,within a three-dimensional (3D) matrix, with autologous cells able to regenerate afunctional 3D tissue. The purpose of this study was therefore to investigate theimpact of cellular communication, between cells of the stromal compartment andendothelial cells, within the three-dimensional porous matrix made of biodegradablenatural polysaccharides, focusing on bone repair. Our results show that thearchitecture and the nature of the 3D macroporous matrix promotes the guidance ofmesenchymal stems cells, derived from human bone marrow, towards theosteoblastic lineage. Also, that the organization in aggregates, promoted by the 3Dmatrices, stimulated cell communication, evidenced by the formation of GAPjunctions and activity of Connexins 43. We also focused on the function ofPannexines 1 and 3 for the 3D culture in these matrices of polysaccharides. Inconclusion, this work shows that cell-cell interactions play a major role in order toimprove bone tissue regeneration. Also, cellular and experimental data demonstratesthe advantage of using a total fraction of bone marrow cells to promote both boneformation and vascularization
Renaud, Matthieu. "Évaluation d'un substitut osseux résorbable porteur de cellules souches : approche cellulaire pour la régénération osseuse in vivo". Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTT081.
Pełny tekst źródłaDespite the development of biomaterials in the field of bone grafts and alveolar preservation, the results are no sufficient to made reconstructions ad integrum of bone tissue. Bone engineering techniques seem to be the preferred way to improve our surgical techniques. Porous silicon is a promising material for tissue engineering and especially for bone regeneration. Indeed, its surface allows cell adhesion. And then, it’s a non-toxic and bioresorbable interesting material properties carrying stem cells. Dental pulp stem cells (DPSC) are easily accessible cells in the oral cavity. Their proliferation and differentiation capacities associated with porous silicon appear to be attractive for therapeutic applications in bone regeneration. The results of the in vitro studies have shown the interest for in vivo application. In this thesis, we have tested the combination of porous silicon and dental pulp stem cells in vivo experimentation, using the same characteristics of the in vitro reference study. For this, the material was produced in particle form to be used as bone filling material, associated or not with DPSC. The rat-tail model was developed and tested to reduce the number of animals needed for the study while maintaining the statistical power of the results. Studies have shown the possibility of using this model for bone regeneration defects surgically created. In addition, it seems that this model can also be useful for studies on osseointegration of implantable systems and bone regeneration around these implants. Then, the porous silicon was tested under these conditions, with or without DPSC, in comparison with a positive control and a negative control. This association has emerged as a promising approach for bone regeneration in vivo
Bostan, Luciana Elena. "Matériaux polymères avec hydrophilie contrôlée. Applications en ingénierie tissulaire du cartilage articulaire". Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00743464.
Pełny tekst źródłaWillemin, Anne-Sophie. "Stratégies cellulaires et environnementales pour le développement d’un substitut osseux prévascularisé". Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0191.
Pełny tekst źródłaIn case of critical-sized defects, the bone tissue ability of natural healing is not sufficient and needs to be assisted. The autologous bone graft is currently the gold standard. However, this solution has drawbacks that have led to the development of bone substitutes. Nowadays, no substitute is able to supply autogenous bone, due to the difficulties to mimic the vascular system. In recent years, the hopes are focusing on the creation of a prevascularized bone substitute to overcome the main limitation of current alternatives: the creation of a functional vascular network inside the substitute. Our project aims to evaluate the stimulating effect of a natural compound, the nacre extracts called Ethanol Soluble Matrix (ESM), both on the angiogenic abilities of endothelial cell lineage and on the osteogenic differentiation of mesenchymal stem cells (MSCs) to develop a pre-vascularized bone substitute. First, we showed that ESM stimulates the angiogenic potential of two types of endothelial cells: mature endothelial cells (HUVECs, human umbilical vein endothelial cells) and endothelial progenitor cells (EPCs) from cord blood. The ESM, used at the concentration of 200µg/mL, exceeded results obtained with the reference culture medium of EPCs: the EGM-2 (Endothelial Growth Medium). Then, we demonstrated that ESM also exerted a stimulating effect on MSC by increasing the expression of chondrocyte and hypertrophic chondrocyte specific markers, suggesting an orientation of these cells towards endochondral ossification. In line with this work, we studied the paracrine effect of MSCs on endothelial cell lineage, HUVECs and EPCs. Nanoscale extracellular vesicles (nEVs) have been shown to induce an in vitro stimulation of the vascular network formation and of the endothelial gene expression. These encouraging results highlight the feasibility of using ESM as a stimulus for both angiogenesis of EPCs and osteogenesis of MSCs. This stimulus could be associated with MSC-derived nEVs and EPCs within a three-dimensional matrix to develop a pre-vascularized bone substitute
Palomino, Durand Carla. "Hydrogels injectables et éponges à base de complexe polyélectrolytes (chitosane/polymère de cyclodextrine) pour une application en ingénierie tissulaire osseuse". Thesis, Lille 2, 2019. http://www.theses.fr/2019LIL2S006/document.
Pełny tekst źródłaRepair of bone defects by bone tissue engineering (BTE) methods is considered as an alternative to conventional grafts. The aim of this PhD project was to develop two types of BTE scaffolds for bone regeneration: one is in the form of injectable hydrogel, and the other is in the form of sponge. Both scaffolds based on the formation of polyelectrolyte complexes by mixing chitosan (CHT, cationic) and polymer of cyclodextrin (PCD, anionic). Besides developing the sponge scaffold, the vascularization of 3D scaffold (a challenge of BTE) was specially investigated in the first part of the work, for which vascular endothelial growth factor (VEFG) was loaded on the CHT/PCDs sponge to promote the vascularization. The second part of the thesis was dedicated to the elaboration of an injectable CHT/PCD hydrogel, which was intended for minimally invasive surgery. The formulation optimization of hydrogel was performed by tuning the composition ratios of two PCD components: soluble-form PCD (PCDs) and insoluble-form PCD (PCDi), in order to better reach the specific requirement (e.g. rheological properties) of injectable hydrogel for regenerative medicine. Finally, a prospective study on developing the composite hydrogel/sponge by adding a mineral phase - hydroxyapatite (HAp) in the formulation was realized to improve the mechanical and osteoconductive properties.CHT/PCDs sponges were obtained by freeze-drying the hydrogels CHT/PCDs 3:3. The thermal treatment (TT) at different temperatures was further applied on the sponge to improve the mechanical stability. The CHT/PCDs sponge treated at 160°C was opted for further study thanks to high swelling capacity (~ 600%) and moderate lysozyme-induced biodegradation rate in vitro (~ 12% mass loss 21 days). This sponge of choice was further evaluated for the microstructure, the mechanical property (compressive strength) and the cytocompatibility with pre-osteoblasts (MC3T3-E1) and endothelial cells (HUVEC). Results of X-ray microtomography showed a high porosity (~87%) in the sponge with interconnected pores. Good cell adhesion and in-growth (colonization) in the sponge were observed by scanning electron microscopy (SEM). After loading VEGF on the sponge, the release profile of VEGF and the bioactivity of released VEGF were thoroughly studied. It showed that the release of VEGF was rapid (burst) during the first two days, then slowed down up to non-detectable by ELISA method after 7 days. The released VEGF during the first two days showed a significant pro-proliferation and pro-migration effect on HUVECs.For the injectable CHT/PCDi/PCDs hydrogels, optimization of composition ratio was based on evaluating their rheological properties, injectability, and cytotoxicity. The beneficial effect of combining both PCDi and PCDs in the formula of the hydrogel was clearly observed on the properties of hydrogel. Namely, the CHT/PCD hydrogel, composed of equal quantity of PCDi and PCDs, demonstrated the best compromise between structural stability, shearthinning and self-healing properties, and injectability. An excellent cytocompatibility with preosteoblast cells (MC3T3-E1) was also confirmed for the hydrogel with this composition.Based on the optimized formulation, HAp was incorporated at different concentrations, which didn’t disturb the formation or the structural stability of the hydrogels, but improved the viscoelastic properties. The composite sponges, elaborated by lyophilization of these hydrogels, showed that the HAp particles homogeneously dispersed within the macroporous structure of the sponge. These encouraging results showed the feasibility of providing an injectable hydrogel or a composite sponge for BTE scaffold [...]
Cruel, Magali. "Caractérisation et optimisation de l'environnement mécanique tridimensionnel des cellules souches au sein des bioréacteurs d'ingénierie tissulaire osseuse". Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0011/document.
Pełny tekst źródłaBone tissue engineering is currently in full development and a growing field of research. The consideration of the mechanotransduction process is a key factor in the optimization of bioreactors. Mesenchymal stem cells (MSC) used in bone tissue engineering are known to be mechanosensitive but our knowledge of the mechanisms of cell response to mechanical stress needs to be improved. This thesis has a double goal: determining the best possible mechanical microenvironment for human MSC, and apply this environment in a bioreactor. To that aim, human MSC were grown in different conditions and subjected to mechanical stresses. Their response was analyzed through osteogenesis markers. A numerical model was also implemented to simulate the flow in bioreactor with a granular scaffold and evaluate levels and distributions of stresses felt by cells. It was shown that cell response to mechanical stress is strongly dependent on the tridimensional environment. This biological and mechanical study highlights tracks of improvement for bioreactors and scaffolds to optimize the mechanical tridimensional environment of cells in bone tissue engineering
Lalande, Charlotte. "Développement d'un nouveau produit d'ingenierie tissulaire osseuse à base de polymères et de cellules souche du tissu adipeux". Thesis, Bordeaux 2, 2011. http://www.theses.fr/2011BOR21853/document.
Pełny tekst źródłaBone tissue engineering may associate osteoprogenitor cells to a tridimensional scaffold that can promote tissue reconstruction in order to replace bone grafting strategies whose limitations are well known. This study aims to develop a new tissue-engineered construct for bone regeneration constituted by i) a tridimensional polysaccharide-based scaffold, ii) adult stem cells extracted from human adipose tissue and identify the best culture conditions needed to develop a functional construct for clinical use. Our results show that this macroporous scaffold offers, without any osteoinductive factors, a suitable architecture and composition for driving osteoblastic differentiation of ADSCs especially when placing the tissue-engineered construct in dynamic conditions, thanks to cell aggregate conformation promoting cell-to-cell interactions. Thanks to ADSCs labeling, the tissue-engineered construct can be tracked in vivo in a non invasive way by magnetic resonance imaging (MRI), after their subcutaneous implantation. Results evidenced that this scaffold behaves as a cell carrier for of holding in its own cell fraction and delivering another fraction to the site of implantation for inducing a better tissue regeneration process. Finally, a serum free medium meeting standards GMPs (Good Manufacturing Practices) has been developed for inducing ADSCs osteoblastic differentiation as a first step towards clinical application.In conclusion, this polysaccharide-based scaffold associated with ADSCs, cultured under low fluid flow in a new bioreactor device, could be a relevant and promising tissue engineered construct for bone tissue engineering applications
Ho-Shui-Ling, Antalya. "Etude 2D et 3D de la régénération osseuse à la surface et au sein de biomatériaux architecturés et ostéo-inductifs". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI087.
Pełny tekst źródłaTo date, titanium-based alloys (Ti) remain the most used implantable materials for load-bearing applications. Emerging additive manufacturing techniques such as electron beam melting (EBM) enable to custom-build architectured scaffolds of controlled macroporosity. In very difficult clinical situations, potent bioactive signals are needed to boost stem cells: osteoinductive molecules such as bone morphogenetic proteins (BMP-2) are currently used for this purpose. However, one of their limitations is their inappropriate delivery with collagen sponges. Biomimetic surface coatings made of the biopolymers poly(L-lysine) and hyaluronic acid, (PLL/HA) polyelectrolyte films, have recently been engineered as nanoreservoirs for BMP proteins. The aim of this PhD thesis was to develop architectured and osteoinductive 3D titanium-based scaffolds as innovative synthetic bone grafts. To this end, we used the EBM additive manufacturing technique to engineer porous scaffolds with cubit unit-cells. Their surface was coated with biomimetic films containing the bone morphogenetic protein 7 (BMP-7). The porosity was well controlled with a difference from CAD models of less than 1%. The osteoinductive capacity of BMP-7 loaded films was assessed using murine mesenchymal stem cells (MSCs) by quantifying their alkaline phosphatase (ALP) expression, which increased in a dose-dependent manner. The coating of the 3D architectured scaffolds by the bioactive film was characterized using optical and electron microscopy techniques. Finally, the 3D architectured scaffolds coated with BMP-7-loaded films were proved to be osteoinductive at the early stage in vitro. Preliminary experiments are currently done to assess their performance in an in vivo model of a critical size femoral bone defect in rat
Granel, Henri. "Mise au point, caractérisation et optimisation d’hybrides organominéraux à base de polycaprolactone et bioverre pour la régénération tissulaire osseuse : Ingénierie tissulaire osseuse". Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAC106.
Pełny tekst źródłaIndisponible
Schouman, Thomas. "Modélisation biomécanique et étude de la fonctionnalisation d’un implant personnalisé de reconstruction mandibulaire en titane poreux". Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0065/document.
Pełny tekst źródłaSeveral articles report on the regeneration of bone defects using synthetic porous structures mimicking bone micro-architecture. Porous implants exhibiting mechanical properties close to that of bone tissue with enhanced osseointegration ability can be manufactured by means of selective laser melting of titanium. However, bone growth into the pores of such implant could be limited due to oversized elastic properties. We implemented an experimental study with ewes to assess the influence of the overall stiffness of these implants on bone ingrowth in critical-size mandibular defects. Fully load-bearing porous and control implants of varying overall stiffness were developed and implanted in two groups of six ewes. Bone ingrowth was assessed by mechanical characterization of bone-implant interfaces and by the measurement of the newly formed bone volume using micro-CT imaging. Higher bone ingrowth was identified in porous implants compared to control implants. Low-stiffness porous implants exhibited significantly higher bone ingrowth as compared to porous implants with stiffness closer to that of the missing bone. A finite elements model was developed to improve bone fixation of the implant and load transfer through the bone-implant interfaces
Jaramillo, Isaza Sebastián. "Characterization of the mechanical and morphological properties of cortical bones by nanoindentation and Atomic Force Microscopy". Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP2150/document.
Pełny tekst źródłaBone is a dynamical, anisotropic, hierarchical, inhomogeneous and time-dependent biological material. At the micro and nano scales, their mechanical and structural characterizations are still being a challenging topic. Nanoindentation and Atomic Force Microscopy are used to assess the mechanical and morphological characteristics of cortical bones. Time-dependent, elastic and plastic mechanical properties were computed using the nanoindentation method proposed by (Mazeran et al., 2012). Experiments were performed on different species of bones for different conditions. Wistar rat femoral cortical bone was used to assess the evolution of the mechanical properties in a life span model (from growth to senescence). The variation of the mechanical properties with age was evidenced and their correlation with physico-chemical properties was established. Then, prediction equations were proposed to describe these behaviours. From these equations, it is possible to estimate an apparent maturation age for each mechanical property. Our findings suggest maturation age is earlier and growth rate are higher for elastic properties than for time-dependent mechanical properties. Time-dependent mechanical behaviour of Human femoral cortical bones were assessed considering its heterogeneity. Haversian systems with different apparent mineral content were identified by means of their apparent grey levels obtained from ESEM images. Results prove the mechanical heterogeneity of the Haversian systems and highlight the influence of the time-dependent mechanical properties in the anisotropic behaviour of bone. Bovine femoral cortical bone was used to quantify the mechanical and morphological effects of the demineralization process. Bone seems to have a quasi-isotropic mechanical behaviour after mineral loss. AFM images of the remaining organic components show that collagen fibrils are oriented in a possible privileged direction. According to our knowledge, few investigations have been performed simultaneously on mechanical, morphological and physico-chemical properties of bone. All these results provide a better understanding of the interactions of the collagen-mineral matrix, bone remodelling and their influence especially in the time-dependent mechanical response. Data reported in this work could be useful to develop and to improve multi-scale bone models and multi-scale constitutive laws for cortical bone
Josse, Jérôme. "Impact de l'infection à Staphylococcus aureus sur le microenvironnement osseux". Thesis, Reims, 2016. http://www.theses.fr/2016REIMP204/document.
Pełny tekst źródłaStaphylococcus aureus-related bone and joint infections are common diseases whose consequences can range from simple cell damage to delayed bone repair or excessive inflammatory response. To study this phenomenon, we have developed two models of in vitro infection with Staphylococcus aureus and primary bone-forming cells derived from human surgical explants. These cells have been previously cultured in a standard medium or osteogenic medium to obtain two populations at different stages of maturation. The study of Staphylococcus aureus internalization, cell death and production of inflammatory mediators in these 2 populations allowed us to establish whether the impact of Staphylococcus aureus varied depending on cell maturation. We also studied the impact of Staphylococcus aureus on mesenchymal stem cells derived from umbilical cord. In case of bone regeneration in infected site, mesenchymal stem cells may have to interact with Staphylococcus aureus. Therefore, we characterized the ability of these cells to internalize Staphylococcus aureus, to survive against the infection and to produce inflammatory mediators in our in vitro model of acute infection. This project allowed us to validate our in vitro infection models and to characterize the impact of Staphylococcus aureus on different cells in the bone microenvironment, providing new approaches for the development of antibacterial strategies and bone tissue engineering
Mechiche, Alami Saad. "Substrats phospho-calciques pour la régénération osseuse". Thesis, Reims, 2016. http://www.theses.fr/2016REIMS003.
Pełny tekst źródłaBone tissue engineering is a major issue within regenerative medicine. There are three main components in the field of tissue engineering: a scaffold providing a structure for tissue development, a source of stem cells for tissue formation and growth factors or physical stimuli from the biomaterial to direct growth and differentiation of cells. The purpose of this study was to synthesize calcium phosphate substrates by simultaneous spraying of interacting species and to carry out the physico-chemical characterization of the built substrates. We showed that the spraying technique allows the inclusion of organic molecules such as chitosan and hyaluronic acid. The spraying technique allows several physio-chemical characteristics to be varied, rugosity (300 – 700 nm), elasticity (2 – 6 GPa), chemical composition (octacalcium phosphate or dicalcium phosphate dehydrate), but also studied the bioactivity of the substrates (calcium phosphate from the culture medium precipitates at thesurface of the substrates). In another hand, our aim was to isolate stem cells from human umbilical cords’ Wharton’s Jelly and to carry out their genic and proteic characterization by focusing on mesenchymal markers and immunomodulating cytokines, knowing that these cells are candidates for a use in bone regeneration therapy.The last purpose of our study was to evaluate the potential of Wharton’s jelly stem cells to adhere and proliferate onto the sprayed substrates, and also the formation of nodules. The ultrastructural analysis of nodules formed by Wharton’s jelly stem cells showed a layer of secretory cells surrounding collagen fibers, calcium phosphate crystals and cells with a similar morphology to that of osteocytes. Osteoblastic markers appeared to be regulated in cells cultured without osteogenic supplements. To conclude, sprayed calcium phosphate substrates seem to induce osteoblastic differentiation of Wharton’s jelly stem cells through the substrate’s physico-chemical properties. Our model appears as promising for further bone regenerative therapies
Ehret, Camille. "Rôle du strontium en ingénierie tissulaire osseuse pour le développement d’une matrice composite de polysaccharides : application à la technique de Masquelet". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0690/document.
Pełny tekst źródłaReconstruction of large and complex bone defects remains a challenge for orthopaedic and maxillo-facial surgery. The gold standard strategy for bone reconstruction is the autologous bone graft. However, this approach still exhibits some limitations (infection risks, morbidity at the donor site). In this context, tissue engineering can provide innovative solutions for bone reconstruction. Indeed, the use of osteoconductives and osteoinductives matrices could replace autograft. Based on previous data obtained by our laboratory, the first objective of this work was to develop a composite matrix of polysaccharides containing hydroxyapatite (HA) particles doped with strontium (Sr), to stimulate both bone formation and angiogenesis. In vitro and in vivo results allow us to optimize the amount of HA particules and the ratio of Sr-substitution within the polysaccharide-based matrix. The second part of this work was to apply this biomaterial in the context of Masquelet approach. These two time procedure surgery, based on the formation of an induced membrane, is commonly used in orthopaedic and maxillo-facial surgery. The first chirurgical step uses a surgical cement (poly(methyl)methalcrylate, PMMA) to promote around it the formation of a vascularized membrane. Our work was to replace this cement by silicone and to study the influence of radiotherapy treatment on the quality and the function of this induced membrane. The first preclinical evaluation of this matrix has been performed on a rat femoral segmental bone defect, followed by a radiotherapy procedure. The perspectives of this work are to evaluate the performances of this matrix on irradiated segmental mandibular bone defect in large animal
Cordonnier, Thomas. "Associations cellules souches mésenchymateuses et céramiques pour l'ingénierie tissulaire osseuse : intérêt du milieu cellulaire et de l'environnement tridimensionnel sur la différenciation ostéoblastique". Thesis, Tours, 2010. http://www.theses.fr/2010TOUR3141/document.
Pełny tekst źródłaOsteo-articular disorders affect millions of people over the world. Bone tissueengineering, an approach combining human mesenchymal stem cells (MSC) and syntheticmaterials, could potentially fulfill clinical needs. However, the different components of thisapproach and their association should be investigated further to make it clinically useful. Inthis thesis, an initial animal study close to clinical situation allowed us to identify areas thatneed improvement for regenerating bone defect. We were then able to develop a specificmedium which induces a rapid and terminal osteoblastic differentiation of MSC.Subsequently, the use of ceramic particles as cell support has allowed us to obtain hybridmainly composed of extracellular matrix. This biomimetic 3D environment allowsspontaneous osteoblastic commitment of MSC and induces a large bone quantity in vivo.Overall, these results highlight the importance of the environment and the cell differentiationstate for bone formation using bone tissue engineering
Offner, Damien. "Régénération des lésions osseuses maxillo-faciales : épidémiologie, stratégies innovantes au service des patients, qualité et réflexions éthiques". Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAJ094/document.
Pełny tekst źródłaCurrent treatments of maxillofacial bone defects have now been proven. Only the autogenous graft presents the ideal properties but shows complications: chronic pain, infection... Some bone filling techniques that are currently available do not allow the formation of blood vessels, guaranteeing the sustainability of the regenerated tissue for large lesions. It is then necessary to develop implants in that way, and to find ways to fight effectively the risk of infection. This work presents the results of research conducted on the fabrication of nanofibrous implants mimicking the ECM of bone tissue, with a porosity that is favorable to a vascular formation. These implants can be functionalized with growth factors / cells. Ethical considerations are provided on the development of these advances, but also on their applications to ensure that these developments constitute a real progress in the interest of patients. Moreover, this work shows that it is possible to improve the safety of care in the treatment of maxillofacial bone defects, with the development of equipment in the field of hygiene and the establishment of procedures to assess their effectiveness
Bouyer, Charlène. "Manipulations acoustiques de cellules pour l'ingénierie tissulaire". Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10297/document.
Pełny tekst źródłaGenetic or physical cells manipulation aspires to be new challenges in tissue engineering. Current technologies to generate tissues, such as micro-scale hydrogels (microgel) assembly, scaffold seeding, molding or bio-printing suffer from the difficulty to control cells organization, multi-steps time consuming procedures and/or potentially cytotoxic side effects. In this PhD, we aimed at developing cell-friendly and rapid techniques, easily transferable to biological laboratories, for two broadly challenging applications: bone healing and neural tissue engineering, for which the above-mentioned techniques cannot yet provide widely reliable models. In case of a bone critical size defect, external help is often needed for bone healing, and gold-standard for care is bone autograft. Alternatively, the fracture healing process can be stimulated and restored by the implantation at the fracture site of hydrogels embedding growth factors. Both technologies suffer however from side effects such as donor site morbidity or cells over-proliferation in the hydrogel proximity. Moreover, the kinetic of growth factors release cannot be temporally controlled. In this work, we aim at developing an alternative method using ultrasound to spatially and temporally control growth factors release within a biocompatible material: fibrin hydrogels. Towards this goal, we encapsulated, in lipoplexes, plasmids that are under the control of a heat-shock promoter. We then transfected cells, stimulate the production of the targeted protein by heat shock and reported its expression. We also optimized an encapsulation protocol for cells within fibrin gels. This proof of concept demonstrates the feasibility of transfection by lipoplexes with a plasmid under control of heat shock, and pave the way for future developments of in situ transfection of autologous cells, for a tight temporal and spatial control of therapeutic proteins expression using ultrasound-induced hyperthermia
Pereira, Jessica. "Effets d'un polysaccharide sulfaté, le fucoïdane, sur la réparation osseuse induite par les cellules souches mésenchymateuses". Thesis, Paris 5, 2013. http://www.theses.fr/2013PA05S010.
Pełny tekst źródłaIn the case of large bone defects, tissue engineering represents an attractive alternative to transplantation. Tissue engineering is a combination of cells with biomaterials in order to repair tissue. The aim of this work was the study of the improvement of the osteogenic potential of mesenchymal stromal/stem cells derived from human adipose tissue (ASC) in the order to increase the formation of bone matrix in the ischemic territory. We have shown that fucoidan, a marine polysaccharide, was able to improve the osteogenic differentiation of ASC in vitro. However, the combination of these cells with biomaterials (biphasic calcium phosphate particles) is not enough to have bone formation in an ectopic bone growth model in mice. To promote angiogenesis, a crucial step in bone repair, we associated ASC with endothelial progenitor cells (called ECFC), in our model. This association promotes only lightly the bone formation. Our in vitro coculture studies of ECFC with ASC showed that the cells in coculture were able to synthesize several cytokines involved in angiogenic and osteogenic differentiation, such as transforming growth factor (TGF-ß1), insulin like growth factor (IGF-1) or vascular endothelial growth factor (VEGF). However, ASC in coculture did not express the receptors of these cytokines. In our culture conditions, the supernatant of the association of ECFC + ASC induces, compare to ASC alone, an inhibition of osteogenic differentiation which mechanism has to be identified.Our data show the potential of fucoidan in bone tissue engineering and that ASC alone did not promote bone matrix formation
Bélime, Agathe. "Hydrogels injectables à base d'acide hyaluronique comme nouveaux biomatériaux pour la reconstruction osseuse : synthèse et caractérisations". Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENV057/document.
Pełny tekst źródłaBaudequin, Timothée. "Caractérisation biologique et mécanique d'un subsitut osseux biohybride et développement de scaffolds par électrospinning : vers un pansement vivant pour la reconstruction maxillo-faciale". Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2219/document.
Pełny tekst źródłaAn hybrid bone substitute, based on a specific biomaterial (scaffold) and living cells, was studied, developed with a tissue engineered method and characterized. It should meet the expectations of the maxillofacial surgery : a standard process which could fit with the complex geometries of each patient’s bone mass loss, a flexible shape with an easy handling, a prevascularization and a sufficient mechanical cohesion. A sheet-like shape was thus designed and developed in a specific flat cell culture chamber, with a monolayer of calcium phosphate granules as a scaffold. After both biological and mechanical full characterizations with a cell line, the process was adapted to a coculture of human primary cells (stem and endothelial cells). Relevant differentiation and prevascularization were highlighted but the mechanical cohesion could be noticed as too low to ensure an easy handling during the surgery. The last part of this thesis project was thus the set-up of a device for electrospun polymer fibers in order to use them as a new scaffold. The production of these materials was efficiently performed for several polymers. The differentiation potential for bone and tendon lineages was studied and compared to other scaffolds from national and international collaborations. The application of mechanical solicitations to the substitutes during cellculture was also studied
Le, Pape Fiona. "Evaluation de la contribution d'une hémoglobine marine dans la culture cellulaire et dans la cellularisation de substituts osseux et méniscaux par des cellules souches mésenchymateuses". Thesis, Brest, 2016. http://www.theses.fr/2016BRES0002/document.
Pełny tekst źródłaThis work aimed to develop cell culture systems, in 2D and 3D, based on the properties of HEMOXCell®, a marine oxygen carrier. Our approach was articulated in two main parts: the first one dealing with the assessment of the use of HEMOXCell® in the culture of two cellular models, and the second one, exploiting the results obtained for tissue engineering purposes. In this first axis, the dose-response effect of HEMOXCell® in the CHO-S cells and mesenchymal stem cells (MSC) in vitro culture, allowed the identification of optimal working concentrations, which can promote cell viability and proliferation. The CHO-S model has contributed to the establishment of a performance test of the molecule, and encouraged its use for bioproduction stimulation. The tests performed on MSCs were used to validate the harmlessness of the molecule at low doses and the maintenance of "stemness". The idea to associate MSCs with porous scaffolds is a promising approach for tissue engineering applications, but it is confronted to the lack of oxygen in the depth of the substitutes. In the second part of this project, we worked at improving the cellularization of bone and meniscal substitutes, under static and dynamic culture systems, w/ and w/o HEMOXCell®. In parallel, a study was conducted to attempt to characterize the meniscal cells. Analyses of cellularized biomaterials suggest a beneficial effect of HEMOXCell® when used as a differentiation media supplement. This work contributed to improve this oxygen carrier understanding and to extend the field of its potential uses particularly for therapeutic applications
Beauchesne, Claire. "Etude expérimentale et modélisation multi-échelles de la croissance tissulaire dans un bioréacteur à perfusion : Application à l’ingénierie tissulaire osseuse". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC090.
Pełny tekst źródłaBone tissue engineering aims at restoring bone tissues. Among the possible treatments, the use of a perfusion bioreactor allows the amplification in vitro of the patient bone or stem cells prior to implantation. The advantage of using such bioreactors is two-fold: in addition to greatly improving species transport, tissue production is enhanced. Although promising, this technique suffers from its empirical conception and now needs to be optimized. The purpose of this thesis is to study and model tissue growth and cell proliferation under a fluid flow of culture medium at the scale of the bioreactor. In particular, we wish to understand the impact of fluid flow on tissue formation. To this end, a double approach of experimentation and modeling has been adopted. Cell culture experiments in a perfusion bioreactor highlighted the preferential cell proliferation in the parietal region as a consequence of the heterogeneity of the scaffold, and the evolution of the tissue morphology. A model for predicting the cell's fate along with tissue growth at the scale of the bioreactor is proposed. The hierarchy of the system is considered and the upscaling procedures are carried out with the Volume Averaging Method
Guduric, Vera. "3D Printing and Characterization of PLA Scaffolds for Layer-by-Layer BioAssembly in Tissue Engineering". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0858/document.
Pełny tekst źródłaTissue Engineering (TE) is “an interdisciplinary field that applies principles of engineering and the life sciences toward development of biological substitutes that restore, maintain, or improve tissue function”. The First application of TE is to replace damaged tissues by artificial cell-materials products of tissue engineering (TE). Another TE application is to produce 2 or 3 dimensional (2D and 3D) models for biological and pharmacological in vitro studies. These models or tissue replacements can be fabricated using a combination of different interdisciplinary methods of medicine, biology, chemistry, physics, informatics and mechanics, providing specific micro-environment with different cell types, growth factors and matrix.One of the major challenges of tissue engineering is related to limited cell penetration in the inner parts of porous biomaterials. Poor cell viability in the center of engineered tissue is a consequence of limited oxygen and nutrients diffusion due to insufficient vascular network within the entire construct. Layer-by-layer (LBL) BioAssembly is a new approach based on assembly of small cellularized constructs that may lead to homogenous cell distribution and more efficient three dimensional vascularization of large tissue engineering constructs.Our hypothesis is that LBL Bioassembly approach is more suitable for bone regeneration than conventional tissue engineering approach. The primary objective of this thesis was to evaluate the advantages of LBL Bioassembly approach using 3D-printed polymer membranes seeded with human primary cells. We have evaluated the efficiency of vascular network formation in vivo within entire 3D tissue engineering construct using LBL bioassembly approach and comparing it to the conventional approach based on seeding of cells on the surface of massive 3D scaffolds. There was no significant difference in number of formed blood vessels in 3D at the outer parts of constructs implanted subcutaneously in mice 8 weeks post-implantation. But in the inner parts of implants which were not in direct contact with a host tissue, we could observe statistically more blood vessel formation when LBL bioassembly approach was used. This vascular network formation was more important in the case of co-cultures than mono-vultures of HBMSCs.There were several secondary objectives in this work. The first was to fabricate cellularized 3D constructs for bone tissue engineering using poly(lactic) acid (PLA) membranes and human primary cells: human bone marrow stroma cells (HBMSCs) isolated from the bone marrow, and endothelial progenitor cells (EPCs) isolated from the umbilical cord blood. Then, we have compared different Additive manufacturing technologies to fabricate scaffolds: direct 3D printing (3DP) starting from PLA powder dissolved in chloroform and fused deposition modelling (FDM) using a commercial or a custom-made printer with different resolutions.The custom-made printer equipped with 100 μm nozzle allowed the highest level of printing resolution concerning pores shape and size. In the meantime we evaluated different stabilization systems for layer-by-layer assembling of PLA membranes with human primary cells: the use of 3D printed PLA clips provided the most efficient stabilization to stack PLA membranes in 3D. Another advantage of this stabilization system is that it could be implanted together with LBL constructs. Then we investigated the most suitable cell culture system for such constructs and we observed more efficient cell proliferation and differentiation when co-culture system is used, comparing to mono-cultures.LBL bioassembly approach seems to be suitable solution for efficient vascularization within entire large 3D tissue engineering constructs especially when co-cultures of mesenchymal and endothelial cells are used
Wagner, Quentin. "Optimisation de dispositifs médicaux thérapeutiques implantables pour l'ingénierie tissulaire osseuse et cartilagineuse". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAJ114/document.
Pełny tekst źródłaOur team optimized the formulation of implantable medical devices for bone and cartilage tissue engineering. To that end, we based our work on nanostructured implants, either natural or synthetic, made in the laboratory by electrospinning process, to mimic bone extracellular matrix, and hydrogel of alginate/hyaluronic acid to mimic cartilage extracellular matrix. First, concerning bone regeneration, we optimized the formulation of a nanostructured scaffold composed of natural chitosan to enhance bone regeneration. This was made possible by doping this implantable medical device with silica nanoparticles, offering this nanocomposite better mechanical properties, and excellent biocompatibility with host tissue. Another study with the same aim allowed elaborating a new cell seeding strategy, to seed these implantable medical devices with cell microtissues instead of single cells, offering higher mineralisation efficiencies within the implant. Consequently, for the regeneration of the osteochondral unit, we proposed two compartmented and hybrid implants comprising mesenchymal stem cells microtissues. Those implants are made of a hydrogel containing the stem cells, allowing the regeneration of cartilage, and a membrane, either natural (collagenic Bio-Gide®) or synthetic (electrospun polycaprolactone) equipped with nanoreservoirs (technology patented by the laboratory) of osteogenic growth factor (BMP-7) for the regeneration of osseous stand (the subchondral bone) of the bone-cartilage unit. Finally, to study the improvement in vascular recruitment, we proposed a new strategy combining the modification of an implantable device with angiogenic growth factor (VEGF), prior to its sequential seeding with mesenchymal cells “human osteoblasts” and human endothelial cells (HUVECs). This strategy allowed higher recruitment and structuration of endothelial cells within the implant. To conclude, the implant optimisation strategies developed in the laboratory will certainly allow proposing in the near future new combined Advanced Therapy Medicinal Products (ATMPs) and Implantable Medical Device for bone and cartilage regeneration, in particular in the field of osteoarticular regenerative nanomedicine
Mones, Del Pujol Erwan de. "Reconstruction mandibulaire segmentaire selon la technique des membranes induites avec greffe d’un biomatériau phosphocalcique, de moelle osseuse totale et de simvastatine". Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0322/document.
Pełny tekst źródłaInduced membrane technique with a polymethylmethacrylate (PMMA) spacer and autologous cancellous bone graft has been proposed by doctor Masquelet for segmental long bone reconstruction. This two stage technique could be proposed for segmental mandibular bone reconstruction in oncological situations in case of failure or contraindication of revascularized autologous bone graft. The first objective of this study was to evaluate the histological and biological properties of membranes induced by PMMA with radiotherapy, and to compare them to membranes induced by silicone. This material smoother than PMMA has been chosen to facilitate spacer removal. Membranes induced by both materials in subcutaneous models in rats had similar histological and biological properties, but membranes induced by silicone were less affected by radiotherapy. The second objective of this study was to propose a tissue engineering procedure as an alternative to autologous bone graft. The new bone formation inside silicone induced membranes has been analyzed after implantation of different combinations of macroporous biphasic phosphocalcic ceramic (MBCP+™), total bone marrow, simvastatine and rhBMP-2 in subcutaneous and femoral osseous models in rats. No significant new bone formation has been demonstrated in simvastatin groups. However, a significant new bone formation has been demonstrated in rhBMP-2 groups, with or without radiotherapy. An increased new bone formation has also been demonstrated with total bone marrow
Kérourédan, Olivia. "Effet de la pré-vascularisation organisée par Bioimpression Assistée par Laser sur la régénération osseuse". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0028.
Pełny tekst źródłaIn order to solve the issue of poorly vascularized bone substitutes, development of a microvasculature into tissue-engineered bone substitutes represents a current challenge. The reproduction of local microenvironment and in situ organization of cells are innovating approaches to optimize bone formation. In Biofabrication, Laser-Assisted Bioprinting (LAB) has emerged as a relevant method to print living cells and biomaterials with micrometric resolution. The aim of this work was to study the effect of prevascularization organized by LAB on bone regeneration. The laser workstation Novalase was used to print patterns of endothelial cells onto a « biopaper » of collagen hydrogel seeded with stem cells from the apical papilla. Printing parameters, cell densities and overlay conditions were optimized to enhance the formation of microvascular networks with a defined architecture in vitro. This model was then transposed in vivo, through in situ bioprinting of endothelial cells into mouse calvarial bone defects of critical size, to investigate if prevascularization organized by LAB can promote and spatially control bone regeneration. The results showed that bioprinting allowed to increase blood vessel density in bone defects and promote bone regeneration
Grenier, Jérôme. "Hydrogel poreux pour la reconstruction osseuse : élaboration, caractérisation et mise en œuvre dans un bioréacteur à perfusion". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC091.
Pełny tekst źródłaThe reconstruction of large bone defects requires the implantation of scaffolds that are biocompatible, biodegradable and able to promote bone healing. This thesis focused on a porous biomaterial that had already demonstrated its osteo-inductive properties after implantation in rats and goats. This biomaterial is produced by freeze-drying of a chemically crosslinked polysaccharide-based (pullulan and dextran) hydrogel.First, we studied the influence of the process parameters on the properties of the biomaterial porous structure. The scaffolds were characterized at each step of the fabrication process: by dynamic rheometry during crosslinking, by electron cryo-microscopy just after freezing, by X-ray microtomography in the dry state and finally by confocal microscopy in the swollen state. It appears that the porous structure obtained at the end of freeze-drying strongly depends on the microstructure of the ice formed during the freezing stage: each pore results from the growth of one to a few crystals. Ice grains are mostly generated by secondary nucleation, this phenomenon is enhanced by the presence of the polymer network. Two parameters controlling the porous structure were particularly examined: the amount of crosslinker that reacts with the polysaccharides (which affects the correlation length of the polymer network), and the nucleation temperature at the onset of freezing. After sublimation of ice, the biomaterial becomes highly porous (92-94%).The seeding efficiency of the dried scaffolds was quantified using suspensions of narrow-sized calibrated microspheres and suspensions of cells: the seeding threshold is in the order of the average diameter of the dry pores. After swelling (occurring simultaneously with seeding), porosity is significantly lower (~ 30%) and the average diameter of the swollen pores is 2 to 4 times lower than in the dry state (depending on the crosslink density).Secondly, we investigated in vitro the interactions between the porous hydrogel scaffolds and osteo-competent cells derived from a mouse cell line. The experimental device was designed in order to mimic the physiological conditions. A perfused bioreactor was chosen because of its ability to generate a 3D environment with controlled shear stress and controlled solute concentration. Such a system should help to optimize the biomaterial while reducing the use of animal experiments. A multiscale characterization of the bioreactor tests was implemented: use of biomarkers and confocal microscopy at the spheroid and scaffold scales, magnetic resonance imaging at the bioreactor scale. We also investigated the hydrodynamics and the transport of oxygen within the bioreactor using computational fluid dynamics: fluid, hydrogel and spheroids were described at the MRI spatial resolution (i.e. 55 µm), NavierStokes equations and advection-diffusion equation were simulated using lattice-Boltzmann methods. These methods are indeed particularly suitable for complex geometries. The influence of organoid size and density on the oxygen concentration field was studied to optimize cell viability.This thesis provides key elements to control the microstructure of the porous hydrogel scaffolds and proposes a workflow to optimize the bone healing properties of the biomaterial by coupling tests in perfused bioreactors, experimental characterizations and numerical modelling
Bouët, Guénaëlle. "Impact de l'extinction génique de la sialoprotéine osseuse (BSP) sur la différenciation des ostéoblastes et l'ostéogenèse in vitro : développement et validation d'un bioréacteur pour la culture ostéoblastique en trois dimensions". Phd thesis, Université Jean Monnet - Saint-Etienne, 2013. http://tel.archives-ouvertes.fr/tel-01003241.
Pełny tekst źródłaLiu, Xing. "A contribution to the selection of suitable cells, scaffold and biomechanical environment for ligament tissue engineering". Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0058/document.
Pełny tekst źródłaLigament tissue engineering offers a potential approach to recover or replace injured ligament. The three essential elements that have been investigated towards ligament regeneration consist in a suitable scaffold, an adapted cell source, and the supply of biomechanical/biochemical stimulations. In the current study, synthetic polymer poly (L-lactide-co-ε-caprolactone) (PLCL) and silk have been evaluated as suitable candidates to constitute an adapted scaffold. A series of multilayer braided scaffolds based on PLCL and silk, as well as an original silk/PLCL composite scaffold, have been developed and compared. The conducted physicochemical and biological characterizations have demonstrated that both PLCL and silk constitute adapted candidate material to form ligament scaffolds from the mechanical and biological points of view. Moreover, it has been observed that silk/PLCL composite scaffold resulted in adequate mechanical properties and biocompatibility, and therefore could constitute suitable candidate scaffolds for ligament tissue engineering. Both Wharton’s Jelly mesenchymal stem cells (WJ-MSCs) and Bone marrow mesenchymal stem cells (BM-MSCs) have been evaluated to be cell source for ligament regeneration. MSCs behaviors including cell attachment, proliferation, migration and extracellular matrix synthesis have been investigated. In the present study, both MSCS showed a good biocompatibility to interact with PLCL and silk scaffolds. No significant differences have been detected between WJ-MSCs and BM-MSCs. Finally, the effect of biomechanical stimulation on MSCs differentiation towards ligament tissue has been carried out with a tension-torsion bioreactor. Although few cells were detected on scaffold after 7 days of stimulation, MSCs were observed to exhibit an elongated shape along the longitudinal direction of fibers, which may indicate that an adapted mechanical stimulation could promote MSC-scaffold constructs differentiation towards ligamentous tissue. As a conclusion, this study demonstrates the potential of WJ-MSCs and BM-MSCs combined with a new silk/PLCL composite scaffold towards ligament regeneration