Gotowa bibliografia na temat „InGaN/Si”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „InGaN/Si”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "InGaN/Si"
Gridchin V. O., Reznik R. R., Kotlyar K. P., Dragunova A. S., Kryzhanovskaya N. V., Serov A. Yu., Kukushkin S. A. i Cirlin G. E. "MBE growth of InGaN nanowires on SiC/Si(111) and Si(111) substrates: comparative analysis". Technical Physics Letters 48, nr 14 (2022): 24. http://dx.doi.org/10.21883/tpl.2022.14.52105.18894.
Pełny tekst źródłaBuryi, M., T. Hubáček, F. Hájek, V. Jarý, V. Babin, K. Kuldová i T. Vaněk. "Luminescence and scintillation properties of the Si doped InGaN/GaN multiple quantum wells". Journal of Physics: Conference Series 2413, nr 1 (1.12.2022): 012001. http://dx.doi.org/10.1088/1742-6596/2413/1/012001.
Pełny tekst źródłaNoh, Siyun, Jaehyeok Shin, Yeon-Tae Yu, Mee-Yi Ryu i Jin Soo Kim. "Manipulation of Photoelectrochemical Water Splitting by Controlling Direction of Carrier Movement Using InGaN/GaN Hetero-Structure Nanowires". Nanomaterials 13, nr 2 (16.01.2023): 358. http://dx.doi.org/10.3390/nano13020358.
Pełny tekst źródłaTuan, Thi Tran Anh, Dong-Hau Kuo, Phuong Thao Cao, Van Sau Nguyen, Quoc-Phong Pham, Vinh Khanh Nghi i Nguyen Phuong Lan Tran. "Electrical Characterization of RF Reactive Sputtered p–Mg-InxGa1−xN/n–Si Hetero-Junction Diodes without Using Buffer Layer". Coatings 9, nr 11 (25.10.2019): 699. http://dx.doi.org/10.3390/coatings9110699.
Pełny tekst źródłaHan, Ji Sheng, Sima Dimitrjiev, Li Wang, Alan Iacopi, Qu Shuang i Xian Gang Xu. "InGaN/GaN Multiple Quantum Well Blue LEDs on 3C-SiC/Si Substrate". Materials Science Forum 679-680 (marzec 2011): 801–3. http://dx.doi.org/10.4028/www.scientific.net/msf.679-680.801.
Pełny tekst źródłaWang, Xingyu, Peng Wang, Hongjie Yin, Guofu Zhou i Richard Nötzel. "An InGaN/SiNx/Si Uniband Diode". Journal of Electronic Materials 49, nr 6 (13.03.2020): 3577–82. http://dx.doi.org/10.1007/s11664-020-08038-5.
Pełny tekst źródłaAger, Joel W., Lothar A. Reichertz, Yi Cui, Yaroslav E. Romanyuk, Daniel Kreier, Stephen R. Leone, Kin Man Yu, William J. Schaff i Wladyslaw Walukiewicz. "Electrical properties of InGaN-Si heterojunctions". physica status solidi (c) 6, S2 (26.01.2009): S413—S416. http://dx.doi.org/10.1002/pssc.200880967.
Pełny tekst źródłaALBERT, S., A. BENGOECHEA-ENCABO, M. A. SANCHEZ-GARCÍA, F. BARBAGINI, E. CALLEJA, E. LUNA, A. TRAMPERT i in. "ORDERED GAN/INGAN NANORODS ARRAYS GROWN BY MOLECULAR BEAM EPITAXY FOR PHOSPHOR-FREE WHITE LIGHT EMISSION". International Journal of High Speed Electronics and Systems 21, nr 01 (marzec 2012): 1250010. http://dx.doi.org/10.1142/s0129156412500103.
Pełny tekst źródłaYamamoto, Akio, Kazuki Kodama, Md Tanvir Hasan, Naoteru Shigekawa i Masaaki Kuzuhara. "MOVPE growth of thick (∼1 µm) InGaN on AlN/Si substrates for InGaN/Si tandem solar cells". Japanese Journal of Applied Physics 54, nr 8S1 (21.07.2015): 08KA12. http://dx.doi.org/10.7567/jjap.54.08ka12.
Pełny tekst źródłaCho, ll-Wook, Bom Lee, Kwanjae Lee, Jin Soo Kim i Mee-Yi Ryu. "Luminescence Properties of InGaN/GaN Green Light-Emitting Diodes with Si-Doped Graded Short-Period Superlattice". Journal of Nanoscience and Nanotechnology 21, nr 11 (1.11.2021): 5648–52. http://dx.doi.org/10.1166/jnn.2021.19460.
Pełny tekst źródłaRozprawy doktorskie na temat "InGaN/Si"
Way, Austin J. "Fabrication of a-Si and a-InGaN Photovoltaics by Plasma Sputtering". Ohio University Honors Tutorial College / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors1398270155.
Pełny tekst źródłaJakkala, Pratheesh Kumar. "Fabrication of Si/InGaN Heterojunction Solar Cells by RF Sputtering Method: Improved Electrical and Optical Properties of Indium Gallium Nitride (InGaN) Thin Films". Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1490714042486824.
Pełny tekst źródłaLiang, Hu. "Fabrication of high power InGaN/GaN multiple quantum well blue LEDs grown on patterned Si substrates /". View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?ECED%202008%20LIANG.
Pełny tekst źródłaAli, Ahmed Ahmed. "Développement des dispositifs à base des nanofils III-V pour le photovoltaïque". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS496/document.
Pełny tekst źródłaOver the past twenty years, semiconductor nanowires have attracted major interest for various applications thanks to their particular optoelectronic properties. The combination of the high absorption coefficient of the III-V semiconductors and the low cost of the silicon substrates would allow the realization of photovoltaic cells at low cost and high efficiency. It is in this context that this thesis was developed which focused on the development of devices based on III-V nanowires for photovoltaics. In a first part, the nanofabrication techniques for the realization of devices based on set of nanowires for photovoltaic cells are presented. Next, the fabrication and characterization of devices based on GaN nanowire arrays for photovoltaic applications is paving the way for the development of InGaN / Si tandem solar cells. In the following, we studied the growth of core-shell GaAs nanowires on Si as well as the technological steps for the fabrication of nanowire-based devices in order to prepare the ground for the realization of a tandem III-V cell on Si. Finally, the growth and electro-optical characterization of the nanowires containing axial junctions of raw GaAsP by the VLS-EJM method made it possible to determine the type of doping and the optimization of the structure in order to obtain a photovoltaic effect
Wu, Han-Ming, i 巫漢銘. "Bendable InGaN Light Emitting Membranes Separated from Si Substrates". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/5v63zv.
Pełny tekst źródła國立中興大學
材料科學與工程學系所
106
In this study, InGaN-based light-emitting diodes were separated from silicon substrates as a light-emitting membrane by electrochemical wet etching technique. High lateral wet etching rate on the sacrificial layer was achieved to the lift-off process. In the FE-SEM image and optical measurement, the thickness of the separated membrane which we calculated is about 5.4 micrometer. It matched the thickness which we grew by MOCVD. In the Raman spectra, the Raman peak of the ST-LED was measured at 568.9 cm-1 and the LEM was observed at 568.3 cm-1. The peak shifted about 0.6 cm-1. It indicated that the compressive strain was released from the silicon substrate. In the photoluminescence spectra, the PL intensity of the LEM stronger than the ST-LED . In the far field radiation pattern, the divergence angle of ST-LED is 105 degree, and the LEM is 142 degree, furthermore, the LEM (bend down) is 116 degree. So, the divergence angle of LEM can be tuned by changing the curvature under bending condition. In the electroluminescence spectrum, the peak wavelength of the ST-LED and LEM (flat) (bend down) (bend up) are almost the same. And the EL intensity of LEM is stronger than ST-LED. This result was consistent with the analysis of photoluminescence spectra. Using the methods of this paper to produce InGaN Light Emitting Membranes which can separate devices from the substrate rapidly and the Si substrate can be re-used. In this paper, the InGaN LEMs were separated from Si substrate by electrochemical etching system. It was found that the luminescence wavelength of the LEM was not affected by the bending test but the divergence angle of LEM could be changed by the bending test. Furthermore, after the separation process, the Si substrate can be re-used because of the good surface roughness. In the future, this process technology has considerable potential for the separation of the InGaN-based LEDs from the substrate.
Nien-TingTsai i 蔡念庭. "White-light Emitted InGaN Nanorods Grown on Pyramided Si Substrate". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/70799793370194978645.
Pełny tekst źródła國立成功大學
物理學系
104
In this study, InGaN nanorods were grown on pyramided Si substrate by plasma-assisted molecular beam epitaxy system (PA-MBE). We have grown white-light emitting InGaN nanorods on pyramid Si substrate with single flux ratio, thus causing different In and Ga contents and different emission colors on each face of pyramid Si substrate. From SEM images, the different morphologies of the nanorods are revealed on each face of pyramid Si substrate. When In flux and Ga flux impinges vertically on pyramid, the InGaN nanorods show large rod diameter. However, when In flux and Ga flux impinges with grazing incidence on pyramid result in nanorods with small diameter. The length of the nanorods is about 1 μm. In addition, the direction of N flux enables to control the growth direction of InGaN nanorods on pyramid substrate, which we obviously found nanorods to tilt toward the top of pyramid. PL spectrum measurement results show that the white light emission has been achieved successfully by InGaN nanorods, and the spectrum exhibits a continuous emission range. We have confirmed that each face of pyramid substrate has different composition and different light emission by using spatial resolved catholuminescence (CL) and electron energy loss spectroscopy (EDS) measurements. Finally, we apply the mechanical force on InGaN nanorods, and PL spectrum shows the emission peaks with blue shift of 7 nm due to the photo-piezoelectric effect of III-nitride semiconductors.
Hsu, Jui-wei, i 徐瑞偉. "Bottom-up nanoheteroepitaxy of semipolar InGaN quantum on Si substrates". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/40639143505958822144.
Pełny tekst źródła國立中央大學
光電科學與工程學系
102
this paper proposes the use of ZnO nanorods structure to overcome the mismatch of thermal expansion and the atomic lattice between Si and GaN. We have successfully grown diameter 150nm,and 400nm length of zinc oxide nano-rods array that can achieve GaN on Si , ZnO not only exhibits the lattice constant and thermal expansion coefficient similar to GaN, the oxide alloy can also be easily etched in chemical solutions, which greatly saves the subsequent processing cost. In order to increase internal quantum efficiency (IQE) of the emitter grown on Si, we grew semi-polar nano-pyramidal InGaN/GaN multiple quantum wells with uniquely developed conditions. Further, it is found that the GaN grown on ZnO/Si exhibits p-type behaviors, which is due to the diffusion of Zn into GaN. If confirmed, IQE of the semi-polar quantum wells can be further enhanced through a p-side-down structure, our simulation results show P-side down structure reduces Spillover current ratio of 0.1 or less, and can increase IQE to 0.7 to enhance light efficiency.
Chandan, Greeshma K. "InGaN Based 2D, 1D and 0D Heterostructures on Si(111) by Plasma Assisted Molecular Beam Epitaxy". Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4237.
Pełny tekst źródłaLin, Hsien-yu, i 林憲佑. "Characterization of GaN and InGaN Grown on Patterned 7o-off (001) Si Substrate". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/76531257618176604728.
Pełny tekst źródła國立中央大學
電機工程研究所
99
This dissertation describes an innovative method for selective epitaxial growth of semi-polar (1-101) GaN on V-grooved Si substrates. In addition to the SiO2 mask along the V grooves, SiO2 stripes perpendicular to the V grooves are introduced to overcome the issue of cracking caused by the large mismatch in the thermal expansion coefficients between GaN and Si. The structural and optical properties of the GaN films thus grown, particularly the reduction in dislocation density and the enhancement of their luminescence properties by the selective area epitaxial process, are investigated and elucidated. The growth of semi-polar (1-101) GaN films as thick as 1µm without cracks and InGaN/GaN multiple quantum wells (MQWs) on the resultant GaN have been successfully achieved on V-grooved (001) Si substrate in a dimension of 1x1 cm2. The transmission electron microscopy (TEM) measurements reveal that the dislocations bend toward the [1-100] and [11-20] directions as a consequence of the (1-101) and (11-22) facets that form during the initial stage of the lateral overgrowth upon the SiO2 stripes. This reduction in the dislocation density leads to an increase in the luminescence intensity as observed by photoluminescence (PL) and cathodoluminescence (CL) measurements at room temperature. Finally, the crack-free film was successfully fabricated to devices and showed low leakage current under the bias of -12 V while the turn-on voltage is about 4 V due to the inefficient ionization of Mg in p-GaN layer. Judging from the optical and electrical properties observed, the selective growth method holds promise for high quality free-standing semi-polar GaN substrates and III-nitride semiconductor devices once we further improve Magnesium (Mg) ionization in GaN layer. Secondly, the performance of semi-polar (1-101) light emitting diodes (LEDs) are simulated with variations in the thickness of the MQWs, the barrier doping concentration, and the Aluminum (Al) composition of the AlGaN Electron Blocking Layer (EBL). The highest efficiency is obtained when the thickness of the (1-101) semi-polar quantum wells (QWs) and quantum barriers (QBs) are 3 nm and 9 nm, respectively. It is also found that inserting an AlGaN EBL does not help much for blocking electrons possibly due to the inherently weak polarization, which suppresses the escape of the electrons out of the QW active region. Finally, an opposite IQE tendency was found when different doping concentrations in QBs were applied in (1-101) and (0001) LED structures. The lower polarization field in the semi-polar structure enables the QWs to accommodate more electrons and facilitates radiative recombination before spilling over to p-GaN region, thus light efficiency rises with increasing doping concentration to a specific degree; whereas the polarized (0001) LEDs exhibit an initial monotonic drop in efficiency due to the easy overflow of electrons from the MQWs. The higher the doping concentration in the barriers, the higher the spillover current is, suggesting that the Quantum Confined Stark Effect (QCSE) caused by the strong polarization field is the major factor in the observed efficiency degradation with barrier doping.
Zheng, Yu-Shiang, i 鄭羽翔. "Strain analysis on semipolar nanopyramidal InGaN quantum wells grown on (100) Si substrates". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/8mmy98.
Pełny tekst źródła國立中央大學
光電科學與工程學系
107
In this study, the effect of lattice strain before and after substrate transfer on the optoelectrionic properties of nanostructured InGaN quantum wells (QWs) structures was investigated. The nanostructure QWs were grown on (100) Si substrates by metal-organic chemical vapor deposition (MOCVD), employing ZnO nanorods as the buffer layer to release the huge stratin between Si and the nitride epilayer. Using the small lattice mismatch between ZnO and GaN, we successfully grew the (10-11) semi-polar nanopyramidal QWs on the (100) Si substrate. The diffusion of Zn into GaN during the epitaxial growth also allows us to achieve the naturally formed p-type GaN, producing the desired p-side-down structure for QWs with enhanced interal quantum efficiency. During the growth, three different flow rates of Bis(cyclopentadienyl)-magnesium Mg(C5H5)2, i.e. 40, 80, and 120 sccm were adopted with the attempt to study the effect of p-type doping on the strain and the quantum efficiency of the QWs. Due to the large thermal mismatch between the GaN epilayer and the Si substrate, huge lattice strain is expected in the epilayer after the MOCVD growth. The strain decreased the internal quantum efficiency of the InGaN QWs via the quantum-confinement Stark effect. The semipolar nanostructured QWs produced in this study are expected to exhibit improved radiative recombination efficiency becoause of the alleived QCSE. In addition, we transferred the epitaxial layer from the Si substrate to a silver substrate using a wet-etching technique, releasing the stress on the samples and increasing reflectivity at the epilayer/substrate interface. The released stress and enhanced interface reflectivity should lead to improved external quantum efficiency of the nanopyramidal QWs. Scanning electron microscopy was used to observe the microstructure of the samples and a simulation software is used to analyze the relationship between the film thickness and the reflection wavelength. The samples were also characterized by x-ray diffraction (XRD) and Raman spectroscopy. According to these characterizations, it is found that the sample with less magnesium doping exhibits less tensile stress, and thus the higher internal quantum efficiency.
Części książek na temat "InGaN/Si"
Yablonskii, G. P., i M. Heuken. "Uv-Blue Lasers Based on Ingan/Gan/Al2O3 and on Ingan/Gan/Si Heterostructures". W Towards the First Silicon Laser, 455–64. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0149-6_39.
Pełny tekst źródłaYablonskii, G. P., A. L. Gurskii, E. V. Lutsenko, V. Z. Zubialevich, V. N. Pavlovskii, A. S. Anufryk, Y. Dikme i in. "Optically Pumped UV-Blue Lasers Based on InGaN/GaN/Al2O3 and InGaN/GaN/Si Heterostructures". W UV Solid-State Light Emitters and Detectors, 297–303. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2103-9_26.
Pełny tekst źródłaNakamura, Shuji, Stephen Pearton i Gerhard Fasol. "Zn and Si Co-Doped InGaN/AlGaN Double-Heterostructure Blue and Blue-Green LEDs". W The Blue Laser Diode, 193–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04156-7_9.
Pełny tekst źródłaNakamura, Shuji, i Gerhard Fasol. "Zn and Si Co-Doped InGaN / AlGaN Double-Heterostructure Blue and Blue-Green LEDs". W The Blue Laser Diode, 177–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03462-0_9.
Pełny tekst źródłaKhafagy, Khaled H., Tarek M. Hatem i Salah M. Bedair. "Dislocation-Based Thermodynamic Models of V-Pits Formation and Strain Relaxation in InGaN/GaN Epilayers on Si Substrates". W TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, 2057–64. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36296-6_188.
Pełny tekst źródłaMahala, Pramila, Amit K. Goyal, Sumitra Singh i Suchandan Pal. "Reducing Efficiency Droop for Si-Doped Barrier Model of GaN/InGaN Multi-quantum Well Light-Emitting Diode by Designing Electron Blocking Layer". W Lecture Notes in Electrical Engineering, 565–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2553-3_55.
Pełny tekst źródłaStreszczenia konferencji na temat "InGaN/Si"
Ager, J. W., L. A. Reichertz, K. M. Yu, W. J. Schaff, T. L. Williamson, M. A. Hoffbauer, N. M. Haegel i W. Walukiewicz. "InGaN/Si heterojunction tandem solar cells". W 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922663.
Pełny tekst źródłaYao, Y., J. D. Aldous, D. Won, J. M. Redwing, W. Linhart, C. F. McConville, R. J. Reeves, T. D. Veal i S. M. Durbin. "Epitaxial InGaN on nitridated Si(111) for photovoltaic applications". W 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC). IEEE, 2012. http://dx.doi.org/10.1109/pvsc.2012.6318131.
Pełny tekst źródłaShuhaimi, A., Z. Hassan i T. Egawa. "InGaN-based blue LED grown on Si(111) substrate". W 2011 IEEE Regional Symposium on Micro and Nanoelectronics (RSM). IEEE, 2011. http://dx.doi.org/10.1109/rsm.2011.6088279.
Pełny tekst źródłaAli, Ahmad Hadi, Ahmad Shuhaimi i Zainuriah Hassan. "Structural properties of InGaN-based light-emitting diode epitaxial growth on Si (111) with AlN/InGaN buffer layer". W 2012 IEEE 3rd International Conference on Photonics (ICP). IEEE, 2012. http://dx.doi.org/10.1109/icp.2012.6379837.
Pełny tekst źródłaKumar, Praveen, i Pooja Devi. "Surface Modified InGaN/Si(111) Photoanode For Efficient Photoelectrochemical Water-Splitting". W The 4th World Congress on New Technologies. Avestia Publishing, 2018. http://dx.doi.org/10.11159/icnfa18.126.
Pełny tekst źródłaZhang, Meng, Wei Guo, Animesh Banerjee i Pallab Bhattacharya. "InGaN/GaN nanowire green light emitting diodes on (001) Si substrates". W 2010 68th Annual Device Research Conference (DRC). IEEE, 2010. http://dx.doi.org/10.1109/drc.2010.5551984.
Pełny tekst źródłaOnomura, Masaaki. "Highly efficient InGaN MQW LEDs grown on 200 mm Si substrates". W SPIE OPTO, redaktorzy Jen-Inn Chyi, Yasushi Nanishi, Hadis Morkoç, Joachim Piprek, Euijoon Yoon i Hiroshi Fujioka. SPIE, 2014. http://dx.doi.org/10.1117/12.2041082.
Pełny tekst źródłaLee, J., X. Ni, M. Wu, X. Li, R. Shimada, Ü. Özgür, A. A. Baski i in. "Internal quantum efficiency of m-plane InGaN on Si and GaN". W OPTO, redaktorzy Jen-Inn Chyi, Yasushi Nanishi, Hadis Morkoç, Cole W. Litton, Joachim Piprek i Euijoon Yoon. SPIE, 2010. http://dx.doi.org/10.1117/12.843727.
Pełny tekst źródłaKim, Jun-Youn, Yongjo Tak, Jae Won Lee, Hyun-Gi Hong, Suhee Chae, Hyoji Choi, Bokki Min i in. "Highly efficient InGaN/GaN blue LED grown on Si (111) substrate". W CLEO: Science and Innovations. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_si.2011.cwf1.
Pełny tekst źródłaIto, R., F. R. Hu, K. Ochi, Y. Zhao i K. Hane. "Flower-structured InGaN/GaN quantum-well nanodisk crystals on micromachined Si pillars". W 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics. IEEE, 2007. http://dx.doi.org/10.1109/omems.2007.4373901.
Pełny tekst źródła