Spis treści
Gotowa bibliografia na temat „Infinite-layer nickelates”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Infinite-layer nickelates”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Infinite-layer nickelates"
Nomura, Yusuke, i Ryotaro Arita. "Superconductivity in infinite-layer nickelates". Reports on Progress in Physics 85, nr 5 (28.03.2022): 052501. http://dx.doi.org/10.1088/1361-6633/ac5a60.
Pełny tekst źródłaLu, H., M. Rossi, A. Nag, M. Osada, D. F. Li, K. Lee, B. Y. Wang i in. "Magnetic excitations in infinite-layer nickelates". Science 373, nr 6551 (8.07.2021): 213–16. http://dx.doi.org/10.1126/science.abd7726.
Pełny tekst źródłaJi, Yaoyao, Junhua Liu, Lin Li i Zhaoliang Liao. "Superconductivity in infinite layer nickelates". Journal of Applied Physics 130, nr 6 (14.08.2021): 060901. http://dx.doi.org/10.1063/5.0056328.
Pełny tekst źródłaGabay, Marc, Stefano Gariglio i Jean-Marc Triscone. "Functionally doped infinite-layer nickelates". Nature Materials 21, nr 2 (luty 2022): 139–40. http://dx.doi.org/10.1038/s41563-021-01163-4.
Pełny tekst źródłaLin, Hai, Dariusz Jakub Gawryluk, Yannick Maximilian Klein, Shangxiong Huangfu, Ekaterina Pomjakushina, Fabian von Rohr i Andreas Schilling. "Universal spin-glass behaviour in bulk LaNiO2, PrNiO2 and NdNiO2". New Journal of Physics 24, nr 1 (1.01.2022): 013022. http://dx.doi.org/10.1088/1367-2630/ac465e.
Pełny tekst źródłaHirsch, J. E., i F. Marsiglio. "Hole superconductivity in infinite-layer nickelates". Physica C: Superconductivity and its Applications 566 (listopad 2019): 1353534. http://dx.doi.org/10.1016/j.physc.2019.1353534.
Pełny tekst źródłaLi, Yueying, Xiangbin Cai, Wenjie Sun, Jiangfeng Yang, Wei Guo, Zhengbin Gu, Ye Zhu i Yuefeng Nie. "Synthesis of Chemically Sharp Interface in NdNiO3/SrTiO3 Heterostructures". Chinese Physics Letters 40, nr 7 (1.06.2023): 076801. http://dx.doi.org/10.1088/0256-307x/40/7/076801.
Pełny tekst źródłaJin, Hyo-Sun, Warren E. Pickett i Kwan-Woo Lee. "A d 8 anti-Hund’s singlet insulator in an infinite-layer nickelate". Journal of Physics: Materials 5, nr 2 (1.04.2022): 024008. http://dx.doi.org/10.1088/2515-7639/ac6040.
Pełny tekst źródłaZhang, Yajun, Xu He i Philippe Ghosez. "Magnetic excitations in infinite-layer LaNiO2". Applied Physics Letters 122, nr 15 (10.04.2023): 152401. http://dx.doi.org/10.1063/5.0141039.
Pełny tekst źródłaPtok, Andrzej, Surajit Basak, Przemysław Piekarz i Andrzej M. Oleś. "Influence of f Electrons on the Electronic Band Structure of Rare-Earth Nickelates". Condensed Matter 8, nr 1 (8.02.2023): 19. http://dx.doi.org/10.3390/condmat8010019.
Pełny tekst źródłaRozprawy doktorskie na temat "Infinite-layer nickelates"
Raji, Aravind. "Exploring the electronic and structural properties of tantalates and infinite-layer nickelates via electron microscopy and x-ray spectroscopy approaches". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP116.
Pełny tekst źródłaMaterial systems such as transition metal oxides (TMO) exhibits robust functionalities, strongly coupled with its electronic and structural degrees of freedom. One can stabilize novel TMO structures hosting novel properties by controlling these degrees of freedom, as is the case of superconducting infinite-layer (IL) nickelates, two-dimensional electron gases (2DEGs) in KTaO₃, etc. In this thesis, a combination of complementary techniques has been employed that is the scanning transmission electron microscopy (STEM)- electron energy loss spectroscopy (EELS), four dimensional (4D)-STEM, hard X-ray photoemission spectroscopy (HAXPES) and complementary ab-initio calculations and X-ray scattering experiments to elucidate the origins of the complex physics exhibited by these systems. This thesis begins by exploring the origins of competing orders such as the 3a₀ periodic charge order in IL-nickelates, observed in X-ray scattering experiments. Here, through a combined analysis with STEM-EELS, 4D-STEM and HAXPES, this particular ordering was found to be originating from a particular {303}pc ordering of oxygen vacancies in the nickelate thin-film. Further exploration resulted in the discovery of a new valence ordered and tri-component coordinated nickelate phase with the formula A₉B₉O₂₂, that is an intermediate between the parent perovskite and reduced IL-nickelate. Considering the possible contribution of the substrate thin film interface nanostructure to the superconductivity, a combined study with STEM-EELS, 4D-STEM, HAXPES and ab-initio calculations of the interface was done. It was found that there are highly different n-type and p-type interfaces exists in superconducting samples. This non-universality of interface nanostructure in superconducting IL-nickelate samples, decoupled the interface influence and superconductivity in IL-nickelates. This generated interest in studying an oxide interface, where the interface is superconducting, and in the followed part, the superconducting 2DEGs in AlOₓ/KTaO₃ was explored. The electronic and structural aspect of the AlOₓ/KTaO₃ interface controlling the 2DEG was studied using STEM-EELS and HAXPES. A real space map of the 2DEG was obtained, along with indications of a significant unit cell expansion in this region. Layer resolved standing wave (SW)-HAXPES also indicated a substantial polar like displacement for the reduced Ta atoms at the interface. While this thesis explores the structural and electronic aspects of specific systems, the combined approach using electrons (STEM-EELS, 4D-STEM) and X-rays (HAXPES) can be applied to a wide range of TMO systems. It can unravel the origins of complex properties exhibited by them
Adhikary, Priyo. "Superconductivity in strongly correlated systems: Heavy fermions, Cuprates, Infinite-layer Nickelates". Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5570.
Pełny tekst źródłaCzęści książek na temat "Infinite-layer nickelates"
LaBollita, Harrison. "Conductivity of Infinite-Layer Nickelate as a Probe of Spectator Bands". W Springer Theses, 73–86. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-71548-8_6.
Pełny tekst źródła