Artykuły w czasopismach na temat „Inertial Bregman proximal gradient”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Inertial Bregman proximal gradient”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Mukkamala, Mahesh Chandra, Peter Ochs, Thomas Pock i Shoham Sabach. "Convex-Concave Backtracking for Inertial Bregman Proximal Gradient Algorithms in Nonconvex Optimization". SIAM Journal on Mathematics of Data Science 2, nr 3 (styczeń 2020): 658–82. http://dx.doi.org/10.1137/19m1298007.
Pełny tekst źródłaKabbadj, S. "Inexact Version of Bregman Proximal Gradient Algorithm". Abstract and Applied Analysis 2020 (1.04.2020): 1–11. http://dx.doi.org/10.1155/2020/1963980.
Pełny tekst źródłaZhou, Yi, Yingbin Liang i Lixin Shen. "A simple convergence analysis of Bregman proximal gradient algorithm". Computational Optimization and Applications 73, nr 3 (4.04.2019): 903–12. http://dx.doi.org/10.1007/s10589-019-00092-y.
Pełny tekst źródłaHanzely, Filip, Peter Richtárik i Lin Xiao. "Accelerated Bregman proximal gradient methods for relatively smooth convex optimization". Computational Optimization and Applications 79, nr 2 (7.04.2021): 405–40. http://dx.doi.org/10.1007/s10589-021-00273-8.
Pełny tekst źródłaMahadevan, Sridhar, Stephen Giguere i Nicholas Jacek. "Basis Adaptation for Sparse Nonlinear Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 27, nr 1 (30.06.2013): 654–60. http://dx.doi.org/10.1609/aaai.v27i1.8665.
Pełny tekst źródłaYang, Lei, i Kim-Chuan Toh. "Bregman Proximal Point Algorithm Revisited: A New Inexact Version and Its Inertial Variant". SIAM Journal on Optimization 32, nr 3 (13.07.2022): 1523–54. http://dx.doi.org/10.1137/20m1360748.
Pełny tekst źródłaLi, Jing, Xiao Wei, Fengpin Wang i Jinjia Wang. "IPGM: Inertial Proximal Gradient Method for Convolutional Dictionary Learning". Electronics 10, nr 23 (3.12.2021): 3021. http://dx.doi.org/10.3390/electronics10233021.
Pełny tekst źródłaXiao, Xiantao. "A Unified Convergence Analysis of Stochastic Bregman Proximal Gradient and Extragradient Methods". Journal of Optimization Theory and Applications 188, nr 3 (8.01.2021): 605–27. http://dx.doi.org/10.1007/s10957-020-01799-3.
Pełny tekst źródłaWang, Qingsong, Zehui Liu, Chunfeng Cui i Deren Han. "A Bregman Proximal Stochastic Gradient Method with Extrapolation for Nonconvex Nonsmooth Problems". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 14 (24.03.2024): 15580–88. http://dx.doi.org/10.1609/aaai.v38i14.29485.
Pełny tekst źródłaHe, Lulu, Jimin Ye i Jianwei E. "Nonconvex optimization with inertial proximal stochastic variance reduction gradient". Information Sciences 648 (listopad 2023): 119546. http://dx.doi.org/10.1016/j.ins.2023.119546.
Pełny tekst źródłaZhu, Daoli, Sien Deng, Minghua Li i Lei Zhao. "Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method". Journal of Optimization Theory and Applications 189, nr 3 (31.05.2021): 889–918. http://dx.doi.org/10.1007/s10957-021-01865-4.
Pełny tekst źródłaHua, Xiaoqin, i Nobuo Yamashita. "Block coordinate proximal gradient methods with variable Bregman functions for nonsmooth separable optimization". Mathematical Programming 160, nr 1-2 (27.01.2016): 1–32. http://dx.doi.org/10.1007/s10107-015-0969-z.
Pełny tekst źródłaZhang, Xiaoya, Roberto Barrio, M. Angeles Martinez, Hao Jiang i Lizhi Cheng. "Bregman Proximal Gradient Algorithm With Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems". IEEE Access 7 (2019): 126515–29. http://dx.doi.org/10.1109/access.2019.2937005.
Pełny tekst źródłaKesornprom, Suparat, i Prasit Cholamjiak. "A modified inertial proximal gradient method for minimization problems and applications". AIMS Mathematics 7, nr 5 (2022): 8147–61. http://dx.doi.org/10.3934/math.2022453.
Pełny tekst źródłaBoţ, Radu Ioan, Ernö Robert Csetnek i Nimit Nimana. "An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems". Vietnam Journal of Mathematics 46, nr 1 (1.09.2017): 53–71. http://dx.doi.org/10.1007/s10013-017-0256-9.
Pełny tekst źródłaKankam, Kunrada, i Prasit Cholamjiak. "Double Inertial Proximal Gradient Algorithms for Convex Optimization Problems and Applications". Acta Mathematica Scientia 43, nr 3 (29.04.2023): 1462–76. http://dx.doi.org/10.1007/s10473-023-0326-x.
Pełny tekst źródłaAhookhosh, Masoud, Le Thi Khanh Hien, Nicolas Gillis i Panagiotis Patrinos. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization". Journal of Optimization Theory and Applications 190, nr 1 (15.06.2021): 234–58. http://dx.doi.org/10.1007/s10957-021-01880-5.
Pełny tekst źródłaBao, Chenglong, Chang Chen null i Kai Jiang. "An Adaptive Block Bregman Proximal Gradient Method for Computing Stationary States of Multicomponent Phase-Field Crystal Model". CSIAM Transactions on Applied Mathematics 3, nr 1 (czerwiec 2022): 133–71. http://dx.doi.org/10.4208/csiam-am.so-2021-0002.
Pełny tekst źródłaWu, Zhongming, i Min Li. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems". Computational Optimization and Applications 73, nr 1 (18.02.2019): 129–58. http://dx.doi.org/10.1007/s10589-019-00073-1.
Pełny tekst źródłaKesornprom, Suparat, Papatsara Inkrong, Uamporn Witthayarat i Prasit Cholamjiak. "A recent proximal gradient algorithm for convex minimization problem using double inertial extrapolations". AIMS Mathematics 9, nr 7 (2024): 18841–59. http://dx.doi.org/10.3934/math.2024917.
Pełny tekst źródłaKESORNPROM, Suparat, i Prasit CHOLAMJİAK. "A double proximal gradient method with new linesearch for solving convex minimization problem with application to data classification". Results in Nonlinear Analysis 5, nr 4 (30.12.2022): 412–22. http://dx.doi.org/10.53006/rna.1143531.
Pełny tekst źródłaAdly, Samir, i Hedy Attouch. "Finite Convergence of Proximal-Gradient Inertial Algorithms Combining Dry Friction with Hessian-Driven Damping". SIAM Journal on Optimization 30, nr 3 (styczeń 2020): 2134–62. http://dx.doi.org/10.1137/19m1307779.
Pełny tekst źródłaPakkaranang, Nuttapol, Poom Kumam, Vasile Berinde i Yusuf I. Suleiman. "Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery". Journal of Supercomputing 76, nr 12 (27.02.2020): 9456–77. http://dx.doi.org/10.1007/s11227-020-03215-z.
Pełny tekst źródłaJolaoso, L. O., H. A. Abass i O. T. Mewomo. "A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space". Archivum Mathematicum, nr 3 (2019): 167–94. http://dx.doi.org/10.5817/am2019-3-167.
Pełny tekst źródłaBussaban, Limpapat, Attapol Kaewkhao i Suthep Suantai. "Inertial s-iteration forward-backward algorithm for a family of nonexpansive operators with applications to image restoration problems". Filomat 35, nr 3 (2021): 771–82. http://dx.doi.org/10.2298/fil2103771b.
Pełny tekst źródłaWang, Xiaofan, Zhiyuan Deng, Changle Wang i Jinjia Wang. "Inertial Algorithm with Dry Fraction and Convolutional Sparse Coding for 3D Localization with Light Field Microscopy". Proceedings of the AAAI Conference on Artificial Intelligence 38, nr 18 (24.03.2024): 20830–37. http://dx.doi.org/10.1609/aaai.v38i18.30072.
Pełny tekst źródłaLoría-Calderón, Tyrone M., Carlos D. Gómez-Carmona, Keven G. Santamaría-Guzmán, Mynor Rodríguez-Hernández i José Pino-Ortega. "Quantifying the External Joint Workload and Safety of Latin Dance in Older Adults: Potential Benefits for Musculoskeletal Health". Applied Sciences 14, nr 7 (22.03.2024): 2689. http://dx.doi.org/10.3390/app14072689.
Pełny tekst źródłaWu, Zhongming, Chongshou Li, Min Li i Andrew Lim. "Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems". Journal of Global Optimization, 19.08.2020. http://dx.doi.org/10.1007/s10898-020-00943-7.
Pełny tekst źródłaGao, Xue, Xingju Cai, Xiangfeng Wang i Deren Han. "An alternating structure-adapted Bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant". Journal of Global Optimization, 24.06.2023. http://dx.doi.org/10.1007/s10898-023-01300-0.
Pełny tekst źródłaZhang, Hui, Yu-Hong Dai, Lei Guo i Wei Peng. "Proximal-Like Incremental Aggregated Gradient Method with Linear Convergence Under Bregman Distance Growth Conditions". Mathematics of Operations Research, 25.06.2019. http://dx.doi.org/10.1287/moor.2019.1047.
Pełny tekst źródłaTakahashi, Shota, Mituhiro Fukuda i Mirai Tanaka. "New Bregman proximal type algorithms for solving DC optimization problems". Computational Optimization and Applications, 23.09.2022. http://dx.doi.org/10.1007/s10589-022-00411-w.
Pełny tekst źródłaLiu, Jin-Zan, i Xin-Wei Liu. "A dual Bregman proximal gradient method for relatively-strongly convex optimization". Numerical Algebra, Control & Optimization, 2021, 0. http://dx.doi.org/10.3934/naco.2021028.
Pełny tekst źródłaSun, Tao, Linbo Qiao i Dongsheng Li. "Nonergodic Complexity of Proximal Inertial Gradient Descents". IEEE Transactions on Neural Networks and Learning Systems, 2020, 1–14. http://dx.doi.org/10.1109/tnnls.2020.3025157.
Pełny tekst źródłaChen, Kangming, Ellen H. Fukuda i Nobuo Yamashita. "A proximal gradient method with Bregman distance in multi-objective optimization". Pacific Journal of Optimization, 2024. http://dx.doi.org/10.61208/pjo-2024-012.
Pełny tekst źródłaMukkamala, Mahesh Chandra, Jalal Fadili i Peter Ochs. "Global convergence of model function based Bregman proximal minimization algorithms". Journal of Global Optimization, 1.12.2021. http://dx.doi.org/10.1007/s10898-021-01114-y.
Pełny tekst źródłaXiao, Xiantao. "A Unified Convergence Analysis of Stochastic Bregman Proximal Gradient and Extragradient Methods". Journal of Optimization Theory and Applications, 8.01.2021. http://dx.doi.org/10.1007/s10957-020-01799-3.
Pełny tekst źródłaBonettini, S., M. Prato i S. Rebegoldi. "A new proximal heavy ball inexact line-search algorithm". Computational Optimization and Applications, 10.03.2024. http://dx.doi.org/10.1007/s10589-024-00565-9.
Pełny tekst źródłaDuan, Peichao, Yiqun Zhang i Qinxiong Bu. "New inertial proximal gradient methods for unconstrained convex optimization problems". Journal of Inequalities and Applications 2020, nr 1 (grudzień 2020). http://dx.doi.org/10.1186/s13660-020-02522-6.
Pełny tekst źródłaHertrich, Johannes, i Gabriele Steidl. "Inertial stochastic PALM and applications in machine learning". Sampling Theory, Signal Processing, and Data Analysis 20, nr 1 (22.04.2022). http://dx.doi.org/10.1007/s43670-022-00021-x.
Pełny tekst źródłaZhang, Xiaoya, Wei Peng i Hui Zhang. "Inertial proximal incremental aggregated gradient method with linear convergence guarantees". Mathematical Methods of Operations Research, 25.06.2022. http://dx.doi.org/10.1007/s00186-022-00790-0.
Pełny tekst źródłaGuo, Chenzheng, Jing Zhao i Qiao-Li Dong. "A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems". Numerical Algorithms, 9.11.2023. http://dx.doi.org/10.1007/s11075-023-01693-9.
Pełny tekst źródłaJia, Zehui, Jieru Huang i Xingju Cai. "Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems". Journal of Global Optimization, 29.05.2021. http://dx.doi.org/10.1007/s10898-021-01044-9.
Pełny tekst źródłaKankam, Kunrada, Watcharaporn Cholamjiak i Prasit Cholamjiak. "New inertial forward–backward algorithm for convex minimization with applications". Demonstratio Mathematica 56, nr 1 (1.01.2023). http://dx.doi.org/10.1515/dema-2022-0188.
Pełny tekst źródłaSun, Shuya, i Lulu He. "General inertial proximal stochastic variance reduction gradient for nonconvex nonsmooth optimization". Journal of Inequalities and Applications 2023, nr 1 (17.02.2023). http://dx.doi.org/10.1186/s13660-023-02922-4.
Pełny tekst źródłaInkrong, Papatsara, i Prasit Cholamjiak. "Modified proximal gradient methods involving double inertial extrapolations for monotone inclusion". Mathematical Methods in the Applied Sciences, 30.04.2024. http://dx.doi.org/10.1002/mma.10159.
Pełny tekst źródłaValkonen, Tuomo. "Proximal methods for point source localisation". Journal of Nonsmooth Analysis and Optimization Volume 4, Original research articles (21.09.2023). http://dx.doi.org/10.46298/jnsao-2023-10433.
Pełny tekst źródłaMouktonglang, Thanasak, Wipawinee Chaiwino i Raweerote Suparatulatorn. "A proximal gradient method with double inertial steps for minimization problems involving demicontractive mappings". Journal of Inequalities and Applications 2024, nr 1 (15.05.2024). http://dx.doi.org/10.1186/s13660-024-03145-x.
Pełny tekst źródła"Convergence of proximal gradient method with alternated inertial step for minimization problem". Advances in Fixed Point Theory, 2024. http://dx.doi.org/10.28919/afpt/8625.
Pełny tekst źródłaSilveti-Falls, Antonio, Cesare Molinari i Jalal Fadili. "Inexact and Stochastic Generalized Conditional Gradient with Augmented Lagrangian and Proximal Step". Journal of Nonsmooth Analysis and Optimization Volume 2, Original research articles (1.09.2021). http://dx.doi.org/10.46298/jnsao-2021-6480.
Pełny tekst źródłaCohen, Eyal, i Marc Teboulle. "Alternating and Parallel Proximal Gradient Methods for Nonsmooth, Nonconvex Minimax: A Unified Convergence Analysis". Mathematics of Operations Research, 8.02.2024. http://dx.doi.org/10.1287/moor.2022.0294.
Pełny tekst źródła