Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Industrial Metal Finishing.

Artykuły w czasopismach na temat „Industrial Metal Finishing”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Industrial Metal Finishing”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Magalhães, Jorge M., João E. Silva, Fernando P. Castro i João A. Labrincha. "Physical and chemical characterisation of metal finishing industrial wastes". Journal of Environmental Management 75, nr 2 (kwiecień 2005): 157–66. http://dx.doi.org/10.1016/j.jenvman.2004.09.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Flott, Leslie W. "Metal finishing: An overview". Metal Finishing 97, nr 1 (styczeń 1999): 20–34. http://dx.doi.org/10.1016/s0026-0576(00)83059-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Flott, Leslie W. "Metal finishing: an overview". Metal Finishing 99 (styczeń 2001): 19–33. http://dx.doi.org/10.1016/s0026-0576(01)85260-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Flott, Leslie W. "Metal finishing: an overview". Metal Finishing 100 (styczeń 2002): 16–30. http://dx.doi.org/10.1016/s0026-0576(02)82002-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kolb, D. M., i M. A. Schneeweiss. "Scanning Tunneling Microscopy for Metal Deposition Studies". Electrochemical Society Interface 8, nr 1 (1.03.1999): 26–30. http://dx.doi.org/10.1149/2.f05991if.

Pełny tekst źródła
Streszczenie:
Electrolytic metal deposition, particularly from aqueous solution, provides the basis for a number of indispensable industrial applications such as metal winning and refining, metal plating for corrosion protection, and surface finishing. Circuit board manufacturing in microelectronics, in particular, has renewed interest in the research of metal deposition. In addition to its industrial significance, electrodeposition is also of principal interest in regard to its fundamentals, such as, the investigation of electrocrystallization phenomena.
Style APA, Harvard, Vancouver, ISO itp.
6

Durkee, John B. "The future of metal finishing". Metal Finishing 104, nr 9 (wrzesień 2006): 60–62. http://dx.doi.org/10.1016/s0026-0576(06)80306-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Tucker, Reginald E. "Metal finishing gets a makeover". Metal Finishing 105, nr 3 (marzec 2007): 4. http://dx.doi.org/10.1016/s0026-0576(07)00012-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rakandenu, I. Gede Made Gani, i Dyah Kusuma Wardhani. "KAJIAN PENGARUH PENGGUNAAN SEMEN EKSPOS SEBAGAI FINISHING DINDING INTERIOR TERHADAP PSIKOLOGIS PENGGUNA RUANG". AKSEN 5, nr 2 (24.05.2021): 43–51. http://dx.doi.org/10.37715/aksen.v5i2.1870.

Pełny tekst źródła
Streszczenie:
The use of exposed cement materials as wall finishing lately is in great demand and is becoming a designtrend at the moment. Many property buildings ranging from commercial buildings such as cafes, restaurants,to hotels to residential buildings such as houses, apartments and condos use exposed cement as one ofthe interior wall finishing. Exposed cement as wall finishing is usually associated with industrial designstyles. In Indonesia, exposed cement is applied as finishing material after bricks. Using exposed cementas wall finish that nowadays has been trending in architecture and interior applicants gives a differentambience of space, home or building yet still economically acceptable. The using of exposed cement aswall finish are close to the using of industrial style. As known, industrial style is an interior architecturedesign style that adopting industries elements such as the using of metal, bricks and pipe material thenbe exposed on purpose. Industrial style has color palette such as black and greyish. Therefore the usingof exposed cement as wall finish often used in industrial design style. However with the popular use ofexposed cement as wall finish does not mean that it can freely acceptable in all situations, because it canaffect the comfort of the room user.
Style APA, Harvard, Vancouver, ISO itp.
9

Valero, Greg. "New editor joins metal finishing team". Metal Finishing 104, nr 7-8 (lipiec 2006): 6. http://dx.doi.org/10.1016/s0026-0576(06)80272-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kuh, Anselm. "Granted in the metal finishing field". Metal Finishing 102, nr 10 (październik 2004): 75–79. http://dx.doi.org/10.1016/s0026-0576(04)84666-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Kuhn, Anselm. "Granted in the metal finishing field". Metal Finishing 102, nr 3 (marzec 2004): 60–65. http://dx.doi.org/10.1016/s0026-0576(04)90087-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Samonin, V. V., E. A. Spiridonova, A. S. Zotov, M. L. Podvyaznikov i A. V. Garabajiu. "Adsorbents Made of Inorganic Industrial Waste". Ecology and Industry of Russia 25, nr 12 (1.12.2021): 15–23. http://dx.doi.org/10.18412/1816-0395-2021-12-15-23.

Pełny tekst źródła
Streszczenie:
Data demonstrate the possibility of manufacturing adsorbents by using inorganic industrial waste and provide raw material list for this purpose. Inorganic waste coming from water treatment, mining and construction industries, solid fuel combustion products, spent inorganic sorbents, catalysts and chemical absorbers, chemical, metallurgical and metal finishing industries waste are used as raw materials. Adsorbents production methods by using inorganic industrial waste have been analysed, and parameters of porous structure and adsorbents sorption activity in terms of organic compounds and cations of non-ferrous metals resulting from aqueous medium are listed.
Style APA, Harvard, Vancouver, ISO itp.
13

DUKE, L. DONALD. "Pollution Prevention and Hazardous Waste Management in Two Industrial Metal Finishing Facilities". Hazardous Waste and Hazardous Materials 11, nr 3 (styczeń 1994): 435–57. http://dx.doi.org/10.1089/hwm.1994.11.435.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Bianchi, Sergio, i Fabrizio Broggi. "Coil Coating: The Advanced Finishing Technology". Key Engineering Materials 710 (wrzesień 2016): 181–85. http://dx.doi.org/10.4028/www.scientific.net/kem.710.181.

Pełny tekst źródła
Streszczenie:
Coil Coating is an advanced finishing technology available for different metal substrates, specifically steel and aluminum, with several millions of square meters processed each year. Born in the 60’s, the coil coating technology has gained interest in the market in the late 80’s and 90’s and it’s now booming due its peculiarities both technical as well as environmental and in terms of energy. The Coil Coated product is used in many different applications’ fields: architecture, with facades, cladding, industrial and residential roofing, shutters: transportation, with caravan, train interiors; industry, with caps, closures. The same application technology is widely used for canstock – body, ends and taps: the process concept, being the same, though with remarkable differentiation in terms of speed, metal gauges, application systems and paint qualities (water based, low gauge and highly diluted). The process and the product are both very complex: the Product consists of a combination merging metal, surface treatment and paints; the Process is thus a combination of different steps, perfectly synchronized unique in terms of speed and contact time. Metallurgy, Chemistry, Mechanics, Fluid Dynamics, Energy management: this all comes together within seconds on the same line. For Aluminum, the product features depends on metal alloy – usually 1xxx, 3xxx and 5xxx, with the most different tempers ranging from fully soft through fully hard; different paint types and qualities, ranging from standard Polyester, through the newly developed HDPE and Polyurethane with / without Polyamide to high quality PVdF and Fluopolymers. The presentation will detail these technical features highlighting the significant differences between traditional finishing and Coil Coating
Style APA, Harvard, Vancouver, ISO itp.
15

Popa, Mihaela, Na Wang, Sylvie Descartes i Ana Maria Trunfio-Sfarghiu. "Role of Surface Industrial Finishing Process of Joint Implant UHMWPE on their Tribological Behaviour". Applied Mechanics and Materials 658 (październik 2014): 465–70. http://dx.doi.org/10.4028/www.scientific.net/amm.658.465.

Pełny tekst źródła
Streszczenie:
Joint implants have as bearing couples metal on metal, ceramic on metal and metal on polyethylene. The most widely used bearing couple for artificial joint systems is the combination of a polyethylene (PE) acetabular liner and a cobalt–chromium (Co–Cr) alloy femoral head. Although highly used, it is known that wearing of the polyethylene part of total joint implants is the primary cause of premature failure of total joint replacements [1]. Polyethylene particles tend to migrate into the joint creating inflammation, ostelysis and, in the end the loss of the implant. Industrials use different method for the surface finishing process of the polyethylene part of joint implants that lead to different types of surface morphologies. In this study, using atomic force microscopy technique and tribological methods, we have investigated the influence of polyethylene surface morphology on mechanical properties, degradation and friction. Results have shown that polyethylene surfaces obtained by high speed turning machine lead to low friction coefficient and less degradation of the surface during friction test.
Style APA, Harvard, Vancouver, ISO itp.
16

Andrus, Mark E. "A review of metal precipitation chemicals for metal-finishing applications". Metal Finishing 98, nr 11 (listopad 2000): 20–23. http://dx.doi.org/10.1016/s0026-0576(00)83532-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Salacinski, T., T. Chmielewski, M. Winiarski, R. Cacko i R. Świercz. "Roughness of Metal Surface After Finishing Using Ceramic Brush Tools". Advances in Materials Science 18, nr 1 (1.03.2018): 20–27. http://dx.doi.org/10.1515/adms-2017-0024.

Pełny tekst źródła
Streszczenie:
AbstractThe paper describes processes of metal parts edges deburring and surface of metal samples polishing with ceramic tools based on fibre aluminium oxide. It presents the construction of basic types of tools and their practical industrial applications, and evaluates the influence of machining parameters on surface roughness. An important advantage of the used tools is the possibility of deburring and machining of external flat and shaped surfaces as well as internal surfaces and even deep drilled holes. These tools can be practically used for machining all construction materials. The results of machining of selected engineering materials, such as aluminium 5052 and 2017A, Inconel 718, non-alloy steel, in various variants of machining parameters are presented. The influence of machining parameters on machined surface roughness was described.
Style APA, Harvard, Vancouver, ISO itp.
18

Kuhn, Anselm. "New developments in the metal finishing field". Metal Finishing 103, nr 12 (grudzień 2005): 59. http://dx.doi.org/10.1016/s0026-0576(05)80869-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Kodácsy, János. "Finishing of Metal Parts in Magnetic Field Based on Abrasion". Advanced Materials Research 325 (sierpień 2011): 517–22. http://dx.doi.org/10.4028/www.scientific.net/amr.325.517.

Pełny tekst źródła
Streszczenie:
Denomination Magnetism Aided Machining (MAM) comprises a number of relatively new industrial machining processes (mainly finishing and surface improving) developed presently, too. MAM is effective – among others – for polishing, deburring and burnishing ofmetal parts. The magnetic force makes these processes simpler and more productive. Machining force is generated by an adjustable electromagnetic field between two magnetic poles within the working area ensuring the necessary pressure and speed difference between the tools (abrasive grains, pellets or rollers) and the workpieces. The authors give a brief outline of these modern processes. The paper summarizes the results of the experimental research carried out by the authors mainly in the field of Magnetic Abrasive Polishing (MAP) and Magnetic Abrasive Barrel Deburring (MABD).
Style APA, Harvard, Vancouver, ISO itp.
20

Macko, Rudy, i Wendy Searight. "Wastewater from processing: Microfiltration in metal finishing plants". Filtration & Separation 45, nr 7 (wrzesień 2008): 30–33. http://dx.doi.org/10.1016/s0015-1882(08)70260-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Boschetto, Alberto, Luana Bottini, Luciano Macera i Francesco Veniali. "Post-Processing of Complex SLM Parts by Barrel Finishing". Applied Sciences 10, nr 4 (19.02.2020): 1382. http://dx.doi.org/10.3390/app10041382.

Pełny tekst źródła
Streszczenie:
Selective laser melting (SLM) enables the production of metal complex shapes that are difficult or impossible to obtain with conventional production processes. However, the attainable surface quality is insufficient for most applications; thus, a secondary finishing is frequently required. Barrel finishing is an interesting candidate but is often applied without consistent criteria aimed at finding processing parameters. This work presents a methodology based on Bagnold number evaluation and bed behavior diagram, developed on experimental apparatus with different charges and process parameters. The experimentation on an industrial machine and the profilometric analysis allowed the identification of appropriate process parameters and charge media for finishing the investigated materials (Ti6Al4V and Inconel718). Two case studies, characterized by complex shapes, were considered, and consistent surface measures allowed understanding the capability of the technology.
Style APA, Harvard, Vancouver, ISO itp.
22

Han, Guang Chao, Ming Sun, Hai Ou Zhang i Gui Lan Wang. "Research on the Robotic Free Abrasive Polishing System for the Rapid Spray Metal Tooling". Key Engineering Materials 373-374 (marzec 2008): 770–73. http://dx.doi.org/10.4028/www.scientific.net/kem.373-374.770.

Pełny tekst źródła
Streszczenie:
In the rapid spray metal tooling, metal film is spray-formed on the substrate and supported under the back, which will act as the working surface of the rapid metal tool finally. So the finishing process for the sprayed metal film is important to the quality and the lifecycle of the rapid metal tool. The finishing of the metal mould is frequently carried out manually, these kinds of operations are iterative, time consuming and require experience. Automation can introduce cost reduction minimizing production times on such manual finishing operations. This paper presents a robotic polishing system with free abrasive for the finishing of the rapid spray metal tool, which is consisted of a six-degree-of-freedom industrial robot manipulator, a high speed electrical polishing spindle and a numerical swivel table. Soft polishing pad and free abrasive are also selected for the robotic polishing system. The path planning is so important to the robotic polishing system that a partition & flexible path mapping method basing on UG CAM is developed to generate the uniform robotic polishing path on the complex mould surface. UG/Open GRIP programming module is used to generate the driving paths with different path intervals on the predesigned plane for each partitioned part. When the driving paths are projected to the mould curved surface, the uniform polishing paths with NC code can be generated by the multi-axis CAM module of the UG. And the path with NC code can then be transformed to the robotic polishing path. According to the elastic deformation and the abrasion of the soft polishing tool, the robotic polishing path should be adjusted to keep the smooth polishing process by offsetting the pre-compressed value and the abrasive compensation value along the polishing axis direction. Technical parameters of the robotic polishing process are also optimized through the experiments. Finally, the rapid metal punch mould is finished to test the robotic polishing system.
Style APA, Harvard, Vancouver, ISO itp.
23

Modikwe, Thembisile, Nthabiseng Maledi, Ntombi Mathe, Sisa Pityana, Modupeola Dada i Washington Makoana. "Post-processing of direct metal deposited AlCrCoCuFeNi HEA using centrifugal barrel finishing". MATEC Web of Conferences 370 (2022): 06007. http://dx.doi.org/10.1051/matecconf/202237006007.

Pełny tekst źródła
Streszczenie:
Stainless steels, Ni-based alloys, Ti-based alloys, and more recently high entropy alloys have been used in the aerospace industry to improve the exterior properties of components and coatings that require a fine surface finishing with over high temperature range. High- entropy alloys (HEA) have become a ground-breaking research field that provides solutions for structural/ functional materials in the aerospace industry. These alloys, fabricated via direct metal deposition, have better properties than those produced by arc melting. However, the poor surface finish acquired by the layer-by-layer laser deposition process fails to meet the industrial requirements. The implementation of surface treatment by centrifugal barrel finishing is employed to improve the surface roughness of AlCoCrCuFeNi laser deposited HEA. The results have shown a minimum surface roughness decrease of 40%. Thus, an improved surface finish was achieved.
Style APA, Harvard, Vancouver, ISO itp.
24

Joseph, David. "The ABCs of pH measurement in metal finishing". Metal Finishing 101, nr 7-8 (lipiec 2003): 36–43. http://dx.doi.org/10.1016/s0026-0576(03)90188-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Onsager, Steven. "Energy Efficient Washers and Ovens for the Metal Finishing Industry". Manufacturing Letters 33 (wrzesień 2022): 82–94. http://dx.doi.org/10.1016/j.mfglet.2022.07.048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Kim, Uk Su, i Jeong Woo Park. "High-Quality Surface Finishing of Industrial Three-Dimensional Metal Additive Manufacturing Using Electrochemical Polishing". International Journal of Precision Engineering and Manufacturing-Green Technology 6, nr 1 (styczeń 2019): 11–21. http://dx.doi.org/10.1007/s40684-019-00019-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Bhandari, Vandana, Seiko Jose, Pratikhya Badanayak, Anuradha Sankaran i Vysakh Anandan. "Antimicrobial Finishing of Metals, Metal Oxides, and Metal Composites on Textiles: A Systematic Review". Industrial & Engineering Chemistry Research 61, nr 1 (2.01.2022): 86–101. http://dx.doi.org/10.1021/acs.iecr.1c04203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Annamaria, Gisario, Barletta Massimiliano i Veniali Francesco. "Laser polishing: a review of a constantly growing technology in the surface finishing of components made by additive manufacturing". International Journal of Advanced Manufacturing Technology 120, nr 3-4 (21.02.2022): 1433–72. http://dx.doi.org/10.1007/s00170-022-08840-x.

Pełny tekst źródła
Streszczenie:
AbstractAdditive manufacturing is a vanguard production technology that has contributed greatly to speed up replacing on the market of complex-shaped components. A delicate and unavoidable phase of additive technology is that relating to the post-processing of the components, especially the finishing process. Post-processing needs to be automated and made scalable so that the technology can actually be adopted also for mass production. In this respect, an emerging post-processing technology suitable for surface finishing, not in contact and easily automatable, is the one that involves the use of laser sources, known by the name of laser polishing. Laser polishing is spreading, in fact, more and more strongly, in the field of manufacturing as a valid alternative to conventional technologies for the surface finishing of metallic components obtained by additive processes. Laser polishing is widely considered very suitable to improving the surface finish of metal components. When compared with the conventional finishing technologies, laser polishing has many benefits in terms of costs and process times especially if automated, through the use of CNC systems and scanning heads. In this manuscript, the knowledge of this technology is deepened through a review of the relevant literature that highlights the aspects of the interaction of the laser beam with the metal alloys most frequently used in 3D printing, without neglecting the importance of the thermo-mechanical properties that derive from it. The analysis conducted on the technology of laser polishing aims therefore at evaluating the potential applications in industrial engineering, mainly with regard to the surfaces quality achievable as a result of the polishing of metal components fabricated by additive manufacturing.
Style APA, Harvard, Vancouver, ISO itp.
29

Singleton, Ray. "Enhanced automation of plating and metal finishing barrel process operations using automatic barrels for bulk finishing". Metal Finishing 107, nr 12 (grudzień 2009): 38–39. http://dx.doi.org/10.1016/s0026-0576(09)80424-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Shea, Quin. "EPA mandate: A losing proposition for metal finishing industry". Metal Finishing 104, nr 9 (wrzesień 2006): 8. http://dx.doi.org/10.1016/s0026-0576(06)80294-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

"Metal-finishing chemicals". Metal Finishing 98, nr 3 (marzec 2000): 72. http://dx.doi.org/10.1016/s0026-0576(00)81520-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

"Metal-finishing systems". Metal Finishing 97, nr 11 (listopad 1999): 86. http://dx.doi.org/10.1016/s0026-0576(00)82218-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

"Metal-finishing processes". Metal Finishing 97, nr 6 (czerwiec 1999): 155–56. http://dx.doi.org/10.1016/s0026-0576(00)83962-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

"Rosler Metal Finishing". Metal Finishing 103 (wrzesień 2005): 10. http://dx.doi.org/10.1016/s0026-0576(05)80699-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

"Rosler Metal Finishing". Metal Finishing 107, nr 5 (maj 2009): S8. http://dx.doi.org/10.1016/s0026-0576(09)80197-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

"Metal-finishing chemicals". Metal Finishing 100, nr 2 (luty 2002): 122. http://dx.doi.org/10.1016/s0026-0576(02)80198-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

"Metal finishing services". Metal Finishing 102, nr 1 (styczeń 2004): 49. http://dx.doi.org/10.1016/s0026-0576(04)90036-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

"Metal-finishing software". Metal Finishing 93, nr 3 (marzec 1995): 78. http://dx.doi.org/10.1016/0026-0576(95)90668-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

"Metal-finishing systems". Metal Finishing 95, nr 1 (styczeń 1997): 84. http://dx.doi.org/10.1016/s0026-0576(97)81883-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

"Metal Finishing Composition". Metal Finishing 96, nr 4 (kwiecień 1998): 87. http://dx.doi.org/10.1016/s0026-0576(97)86729-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

"Courses in metal finishing". Metal Finishing 98, nr 1 (styczeń 2000): 872. http://dx.doi.org/10.1016/s0026-0576(00)80188-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

"Houghton Metal Finishing Co." Metal Finishing 97, nr 6 (czerwiec 1999): 51. http://dx.doi.org/10.1016/s0026-0576(00)83770-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

"Metal finishing product news". Metal Finishing 104 (marzec 2006): 1–15. http://dx.doi.org/10.1016/s0026-0576(06)80330-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

"Metal finishing product news". Metal Finishing 109, nr 6 (wrzesień 2011): 52–53. http://dx.doi.org/10.1016/s0026-0576(13)70029-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

"Metal Finishing Product News". Metal Finishing 110, nr 4 (maj 2012): 58–59. http://dx.doi.org/10.1016/s0026-0576(13)70136-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

"Courses in metal finishing". Metal Finishing 99 (styczeń 2001): 863. http://dx.doi.org/10.1016/s0026-0576(01)85339-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

"Courses in metal finishing". Metal Finishing 100 (styczeń 2002): 854. http://dx.doi.org/10.1016/s0026-0576(02)82082-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

"AUtomated metal-finishing systems". Metal Finishing 96, nr 1 (styczeń 1998): 81–82. http://dx.doi.org/10.1016/s0026-0576(97)80289-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

"What's happening in metal finishing". Metal Finishing 98, nr 12 (grudzień 2000): 84–85. http://dx.doi.org/10.1016/s0026-0576(00)80112-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

"What's happening in metal finishing". Metal Finishing 98, nr 4 (kwiecień 2000): 89–90. http://dx.doi.org/10.1016/s0026-0576(00)81796-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii