Artykuły w czasopismach na temat „INCREASED TOUGHNESS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „INCREASED TOUGHNESS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ruan, Shiling, John J. Lannutti, Stan Prybyla i Robert R. Seghi. "Increased fracture toughness in nanoporous silica–polyimide matrix composites". Journal of Materials Research 16, nr 7 (lipiec 2001): 1975–81. http://dx.doi.org/10.1557/jmr.2001.0270.
Pełny tekst źródłaLee, S. M., E. Pippel, U. Gosele, C. Dresbach, Y. Qin, C. V. Chandran, T. Brauniger, G. Hause i M. Knez. "Greatly Increased Toughness of Infiltrated Spider Silk". Science 324, nr 5926 (24.04.2009): 488–92. http://dx.doi.org/10.1126/science.1168162.
Pełny tekst źródłaKonrad, Jean-Marie, i Julie Cummings. "Fracture toughness of frozen base and subbase soils in pavement". Canadian Geotechnical Journal 38, nr 5 (1.10.2001): 967–81. http://dx.doi.org/10.1139/t01-032.
Pełny tekst źródłaVan Niekerk, Anna Maria Susanna, i Hester E. Roets. "The Psycho-Educational Practice of Mental Toughness in Dealing with Trauma". International Journal of Psychological Studies 9, nr 4 (20.11.2017): 83. http://dx.doi.org/10.5539/ijps.v9n4p83.
Pełny tekst źródłaWang, Wenke, Yang Guo, Yuanbo Li i Zhengning Li. "Fracture Toughness of Different Region Materials from a Dissimilar Metal Welded Joint in Steam Turbine Rotor". Coatings 12, nr 2 (29.01.2022): 174. http://dx.doi.org/10.3390/coatings12020174.
Pełny tekst źródłaPark, Sang Dae, Mitsugu Todo i Kazuo Arakawa. "Effect of Annealing on Fracture Mechanism of Biodegradable Poly(lactic acid)". Key Engineering Materials 261-263 (kwiecień 2004): 105–10. http://dx.doi.org/10.4028/www.scientific.net/kem.261-263.105.
Pełny tekst źródłaMutoh, Y., N. Miyahara, K. Yamaishi i T. Oikawa. "High Temperature Fracture Toughness in Silicon Nitride and Sialon". Journal of Engineering Materials and Technology 115, nr 3 (1.07.1993): 268–72. http://dx.doi.org/10.1115/1.2904217.
Pełny tekst źródłaYin, Hong Feng, i Lin Lin Lu. "Effect of Processing Condition on the Microstructure and Mechanical Properties of Ti3SiC2/SiC Composites". Materials Science Forum 658 (lipiec 2010): 352–55. http://dx.doi.org/10.4028/www.scientific.net/msf.658.352.
Pełny tekst źródłaWang, Xiao Xiang, Wei Qi Wang, Wei Qing Li, Feng Li Li i Yu Lan Yang. "The Effect of Heat Treatment System on Mechanical Properties of Titanium Alloy BTi-6554". Materials Science Forum 618-619 (kwiecień 2009): 177–80. http://dx.doi.org/10.4028/www.scientific.net/msf.618-619.177.
Pełny tekst źródłaBisht, Neeraj, i Prakash Chandra Gope. "Effect of rice husk (treated/untreated) and rice husk ash on fracture toughness of epoxy bio-composite". Journal of the Mechanical Behavior of Materials 29, nr 1 (1.01.2020): 177–85. http://dx.doi.org/10.1515/jmbm-2020-0018.
Pełny tekst źródłaWang, Pengfei, Zhaodong Li, Guobiao Lin, Shitong Zhou, Caifu Yang i Qilong Yong. "Influence of Vanadium on the Microstructure and Mechanical Properties of Medium-Carbon Steels for Wheels". Metals 8, nr 12 (23.11.2018): 978. http://dx.doi.org/10.3390/met8120978.
Pełny tekst źródłaYu, Kui, Srikkanth Balasubramanian, Helda Pahlavani, Mohammad J. Mirzaali, Amir A. Zadpoor i Marie-Eve Aubin-Tam. "Spiral Honeycomb Microstructured Bacterial Cellulose for Increased Strength and Toughness". ACS Applied Materials & Interfaces 12, nr 45 (28.10.2020): 50748–55. http://dx.doi.org/10.1021/acsami.0c15886.
Pełny tekst źródłaKendall, K., N. McN Alford, S. R. Tan i J. D. Birchall. "Influence of toughness on Weibull modulus of ceramic bending strength". Journal of Materials Research 1, nr 1 (luty 1986): 120–23. http://dx.doi.org/10.1557/jmr.1986.0120.
Pełny tekst źródłaQu, Wen Qing, Min Yuan Song, Jun Shan Yao i Hai Yun Zhao. "Effect of Temperature and Heat Treatment Status on the Ductile Fracture Toughness of 2219 Aluminum Alloy". Materials Science Forum 689 (czerwiec 2011): 302–7. http://dx.doi.org/10.4028/www.scientific.net/msf.689.302.
Pełny tekst źródłaZhao, Qing Xin, Zhao Yang Liu, Jin Rui Zhang i Ran Ran Zhao. "Research on Impact Behavior of Reactive Powder Concrete". Advanced Materials Research 150-151 (październik 2010): 779–82. http://dx.doi.org/10.4028/www.scientific.net/amr.150-151.779.
Pełny tekst źródłaPark, Sun Hyo, In Young Ryu, Won Jun Lee, Dae Joon Kim, Jung Suk Han i Myung Hyun Lee. "Sinterbility and Mechanical Properties of Zirconia Nanoparticles Prepared by Hydrothermal Process". Solid State Phenomena 124-126 (czerwiec 2007): 1293–96. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1293.
Pełny tekst źródłaKim, Ki-Hong, Won-Beom Lee, Tae-Hwan Kim i Seok-Won Son. "Microstructure and Fracture Toughness of Nitrided D2 Steels Using Potential-Controlled Nitriding". Metals 12, nr 1 (11.01.2022): 139. http://dx.doi.org/10.3390/met12010139.
Pełny tekst źródłaFeng, Hu, Gang Chen, Danying Gao, Kunpeng Zhao i Chong Zhang. "Mechanical Properties of Steel Fiber-Reinforced Magnesium Phosphate Cement Mortar". Advances in Civil Engineering 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/3978318.
Pełny tekst źródłaZhou, Ze Yu, Xiang Xiao, Kang Du, Cheng Liu, Dan Lv i Xin Yu Lv. "Effect of Extrusion Temperature on Microstructure and Mechanical Properties of 7A36 Aluminum Alloy". Materials Science Forum 993 (maj 2020): 108–15. http://dx.doi.org/10.4028/www.scientific.net/msf.993.108.
Pełny tekst źródłaKinloch, A. J., A. C. Taylor, M. Techapaitoon, W. S. Teo i S. Sprenger. "From matrix nano- and micro-phase tougheners to composite macro-properties". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, nr 2071 (13.07.2016): 20150275. http://dx.doi.org/10.1098/rsta.2015.0275.
Pełny tekst źródłaYenigun, Burak, Muhammad Salman Chaudhry, Elli Gkouti i Aleksander Czekanski. "Characterization of Mode I and Mode II Interlaminar Fracture Toughness in CNT-Enhanced CFRP under Various Temperature and Loading Rates". Nanomaterials 13, nr 11 (25.05.2023): 1729. http://dx.doi.org/10.3390/nano13111729.
Pełny tekst źródłaSingh, D., i D. K. Shetty. "Microstructural Effects on Fracture Toughness of Polycrystalline Ceramics in Combined Mode I and Mode II Loading". Journal of Engineering for Gas Turbines and Power 111, nr 1 (1.01.1989): 174–80. http://dx.doi.org/10.1115/1.3240220.
Pełny tekst źródłaLiu, Jingwu, Jian Sun, Shitong Wei i Shanping Lu. "The Effect of Nickel Contents on the Microstructure Evolution and Toughness of 800 MPa Grade Low Carbon Bainite Deposited Metal". Crystals 11, nr 6 (21.06.2021): 709. http://dx.doi.org/10.3390/cryst11060709.
Pełny tekst źródłaSafiuddin, Md, George Abdel-Sayed i Nataliya Hearn. "Flexural and Impact Behaviors of Mortar Composite Including Carbon Fibers". Materials 15, nr 5 (23.02.2022): 1657. http://dx.doi.org/10.3390/ma15051657.
Pełny tekst źródłaXu, Fang, Ming Kai Zhou, Wei Guo Shen i Bei Xing Li. "Study on the Toughness Performance of Polypropylene Fiber and SBR Polymer Latex Modified Cement Mortar". Advanced Materials Research 79-82 (sierpień 2009): 1751–54. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.1751.
Pełny tekst źródłaKwon, Soon Chul, Tadaharu Adachi, Wakako Araki i Akihiko Yamaji. "Effect of Particle Size on Fracture Toughness of Spherical-Silica Particle Filled Epoxy Composites". Key Engineering Materials 297-300 (listopad 2005): 207–12. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.207.
Pełny tekst źródłaUral, Ani, i Deepak Vashishth. "Effects of Intracortical Porosity on Fracture Toughness in Aging Human Bone: A μCT-Based Cohesive Finite Element Study". Journal of Biomechanical Engineering 129, nr 5 (9.02.2007): 625–31. http://dx.doi.org/10.1115/1.2768377.
Pełny tekst źródłaKuang, Jia Cai, Hong Lei Wang, Xin Gui Zhou i Ying Jun Deng. "Fracture Toughness of CNTs/AlN Ceramics Tested by Indentation". Advanced Materials Research 177 (grudzień 2010): 151–53. http://dx.doi.org/10.4028/www.scientific.net/amr.177.151.
Pełny tekst źródłaZheng, Xu, Yi Yang, Jianguo Tang, Baoshuai Han, Yanjin Xu, Yuansong Zeng i Yong Zhang. "Influence of Retrogression Time on the Fatigue Crack Growth Behavior of a Modified AA7475 Aluminum Alloy". Materials 16, nr 7 (29.03.2023): 2733. http://dx.doi.org/10.3390/ma16072733.
Pełny tekst źródłaHart, Kevin R., Ryan M. Dunn, Jennifer M. Sietins, Clara M. Hofmeister Mock, Michael E. Mackay i Eric D. Wetzel. "Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing". Polymer 144 (maj 2018): 192–204. http://dx.doi.org/10.1016/j.polymer.2018.04.024.
Pełny tekst źródłaTaheri, Morteza, Seyed Farshid Kashani-Bozorg, Hamid Reza Teymouri, Amir Hossein Fallah-Morad, Rohallah Panahi Liavoli i Amirreza Davar. "Characterization of fracture behavior of a nickel-based using Charpy instrumented in different conditions of heat treatment and evaluation temperatures". Engineering Research Express 3, nr 4 (22.10.2021): 045010. http://dx.doi.org/10.1088/2631-8695/ac2f54.
Pełny tekst źródłaJayesh, S., i Jacob Elias. "Experimental Investigations on Impact Toughness and Shear Strength of Novel Lead Free Solder Alloy Sn-1Cu-1Ni-XAg". Powder Metallurgy Progress 19, nr 2 (1.12.2019): 90–96. http://dx.doi.org/10.1515/pmp-2019-0009.
Pełny tekst źródłaTakayama, Tetsuo, Mitsugu Todo i Kazuo Arakawa. "Relationship between Fracture Mechanism and Microstructure in PLA/PCL Polymer Blends". Key Engineering Materials 353-358 (wrzesień 2007): 1169–72. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.1169.
Pełny tekst źródłaZhao, Jing Song, Yi Feng, Nan Nan Chen, Fan Yan Chen, Jie Chen, Xue Bin Zhang, Xiao Bing Pan, Jing Tu i Xiao Ping Ouyang. "Fabrication and Mechanical Properties of Alumina—CNTs Composites". Applied Mechanics and Materials 66-68 (lipiec 2011): 1390–96. http://dx.doi.org/10.4028/www.scientific.net/amm.66-68.1390.
Pełny tekst źródłaYou, Min, Chun Zhi Mei, Wen Jun Liu, Jing Rong Hu i Ling Wu. "Effect of Alkali on the Impact Toughness of Adhesively Bonded Joints". Applied Mechanics and Materials 166-169 (maj 2012): 1904–7. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.1904.
Pełny tekst źródłaXue, Xiao Huai, Song Nian Lou, Bainian Qian i Shaofei Yu. "Development of the SAW Wire for High Strength TMCP Steel". Materials Science Forum 475-479 (styczeń 2005): 269–72. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.269.
Pełny tekst źródłaYan, Han, Di Zhao, Tongfu Qi, Xuesong Leng i Kuijun Fu. "Relationship of the Microstructure and Toughness of the Coarse Grain Heat-Affected Zone of TiNbV Microalloyed Steels Based on Electron Backscatter Diffraction Analysis". Journal of Materials Engineering and Performance 31, nr 1 (7.10.2021): 201–10. http://dx.doi.org/10.1007/s11665-021-06140-1.
Pełny tekst źródłaSikder, Bablu, i Abhijit Chanda. "Effect of Annealing on Fracture Toughness Evaluation of Ba0.5Sr0.5Co0.8 Fe0.2O3−δ (BSCF) at Different Temperatures". Applied Mechanics and Materials 592-594 (lipiec 2014): 816–20. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.816.
Pełny tekst źródłaZhou, Min, Lin Xiu Du, Xiang Hua Liu i Kai Zhang. "Phase Transformation and Properties under Different Quenching Mediums of a X120 Pipeline Steel". Advanced Materials Research 152-153 (październik 2010): 408–12. http://dx.doi.org/10.4028/www.scientific.net/amr.152-153.408.
Pełny tekst źródłaBang, Kook Soo, Woo Yeol Kim, Chan Park, Young Ho Ahn i Jong Bong Lee. "Effects of Nitrogen on Weld Metal Microstructure and Toughness in Submerged Arc Welding". Materials Science Forum 539-543 (marzec 2007): 3906–11. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.3906.
Pełny tekst źródłaTaştan, Zarife. "Mental Toughness and Motivational Climate of Volleyball Players". Pakistan Journal of Medical and Health Sciences 15, nr 11 (30.11.2021): 3321–24. http://dx.doi.org/10.53350/pjmhs2115113321.
Pełny tekst źródłaFei, Yu Huan, Chuan Zhen Huang, Han Lian Liu i Bin Zou. "Mechanical Properties of Al2O3-TiN Nanocomposite Ceramic Tool Materials". Key Engineering Materials 499 (styczeń 2012): 108–13. http://dx.doi.org/10.4028/www.scientific.net/kem.499.108.
Pełny tekst źródłaLiu, Cheng Jun, Ya He Huang, Hong Liang Liu i Mao Fa Jiang. "Effects and Mechanisms of Niobium on the Fracture Toughness of Heavy Rail Steel". Advanced Materials Research 163-167 (grudzień 2010): 110–16. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.110.
Pełny tekst źródłaSembokuya, Hideki, Masaki Hojo i Kiyoshi Kemmochi. "Mode I Interlaminar Fracture Toughness of Organic Fiber Reinforced Plastics". Advanced Composites Letters 6, nr 3 (maj 1997): 096369359700600. http://dx.doi.org/10.1177/096369359700600302.
Pełny tekst źródłaMadrigal, Leilani. "The Development of a Behavior Checklist for Mentally Tough Behaviors in Volleyball". Sport Psychologist 34, nr 3 (1.09.2020): 177–86. http://dx.doi.org/10.1123/tsp.2019-0159.
Pełny tekst źródłaSlyker, Leigh, i Lawrence Bonassar. "Alginate Conjugation Increases Toughness in Auricular Chondrocyte Seeded Collagen Hydrogels". Bioengineering 10, nr 9 (4.09.2023): 1037. http://dx.doi.org/10.3390/bioengineering10091037.
Pełny tekst źródłaChotěborský, R., P. Hrabě i A. Kabutey. "Change of mechanical properties in substrate during rewelding deposit". Research in Agricultural Engineering 57, No. 3 (22.09.2011): 105–9. http://dx.doi.org/10.17221/36/2010-rae.
Pełny tekst źródłaShin, Yong-Chul, i Seung-Mo Kim. "Enhancement of the Interlaminar Fracture Toughness of a Carbon-Fiber-Reinforced Polymer Using Interleaved Carbon Nanotube Buckypaper". Applied Sciences 11, nr 15 (24.07.2021): 6821. http://dx.doi.org/10.3390/app11156821.
Pełny tekst źródłaGuo, Wei, Zicheng Zheng, Wei Li, Hao Li, Fankun Zeng i Huajie Mao. "The Cellular Structure and Toughness of Hydrogenated Styrene-Butadiene Block Copolymer Reinforced Polypropylene Foams". Polymers 15, nr 6 (17.03.2023): 1503. http://dx.doi.org/10.3390/polym15061503.
Pełny tekst źródłaBedse, R. D., J. K. Sonber, K. Sairam, T. S. R. Ch Murthy i R. C. Hubli. "Processing and Characterization of CrB2-Based Novel Composites". High Temperature Materials and Processes 34, nr 7 (13.01.2015): 683–87. http://dx.doi.org/10.1515/htmp-2014-0084.
Pełny tekst źródła