Artykuły w czasopismach na temat „InceptionResNetV2”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „InceptionResNetV2”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ullah, Naeem, Javed Ali Khan, Mohammad Sohail Khan, Wahab Khan, Izaz Hassan, Marwa Obayya, Noha Negm i Ahmed S. Salama. "An Effective Approach to Detect and Identify Brain Tumors Using Transfer Learning". Applied Sciences 12, nr 11 (2.06.2022): 5645. http://dx.doi.org/10.3390/app12115645.
Pełny tekst źródłaYazid Aufar, Muhammad Helmy Abdillah i Jiki Romadoni. "Web-based CNN Application for Arabica Coffee Leaf Disease Prediction in Smart Agriculture". Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 7, nr 1 (2.02.2023): 71–79. http://dx.doi.org/10.29207/resti.v7i1.4622.
Pełny tekst źródłaJiang, Kaiyuan, Jiawei Zhang, Haibin Wu, Aili Wang i Yuji Iwahori. "A Novel Digital Modulation Recognition Algorithm Based on Deep Convolutional Neural Network". Applied Sciences 10, nr 3 (9.02.2020): 1166. http://dx.doi.org/10.3390/app10031166.
Pełny tekst źródłaFaruk, Omar, Eshan Ahmed, Sakil Ahmed, Anika Tabassum, Tahia Tazin, Sami Bourouis i Mohammad Monirujjaman Khan. "A Novel and Robust Approach to Detect Tuberculosis Using Transfer Learning". Journal of Healthcare Engineering 2021 (25.11.2021): 1–10. http://dx.doi.org/10.1155/2021/1002799.
Pełny tekst źródłaAl-Timemy, Ali H., Laith Alzubaidi, Zahraa M. Mosa, Hazem Abdelmotaal, Nebras H. Ghaeb, Alexandru Lavric, Rossen M. Hazarbassanov, Hidenori Takahashi, Yuantong Gu i Siamak Yousefi. "A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning". Diagnostics 13, nr 10 (10.05.2023): 1689. http://dx.doi.org/10.3390/diagnostics13101689.
Pełny tekst źródłaCheng, Wen-Chang, Hung-Chou Hsiao, Yung-Fa Huang i Li-Hua Li. "Combining Classifiers for Deep Learning Mask Face Recognition". Information 14, nr 7 (21.07.2023): 421. http://dx.doi.org/10.3390/info14070421.
Pełny tekst źródłaMahdianpari, Masoud, Bahram Salehi, Mohammad Rezaee, Fariba Mohammadimanesh i Yun Zhang. "Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery". Remote Sensing 10, nr 7 (14.07.2018): 1119. http://dx.doi.org/10.3390/rs10071119.
Pełny tekst źródłaPohtongkam, Somchai, i Jakkree Srinonchat. "Tactile Object Recognition for Humanoid Robots Using New Designed Piezoresistive Tactile Sensor and DCNN". Sensors 21, nr 18 (8.09.2021): 6024. http://dx.doi.org/10.3390/s21186024.
Pełny tekst źródłaMondal, M. Rubaiyat Hossain, Subrato Bharati i Prajoy Podder. "CO-IRv2: Optimized InceptionResNetV2 for COVID-19 detection from chest CT images". PLOS ONE 16, nr 10 (28.10.2021): e0259179. http://dx.doi.org/10.1371/journal.pone.0259179.
Pełny tekst źródłaAngurala, Mohit. "Augmented MRI Images for Classification of Normal and Tumors Brain through Transfer Learning Techniques". International Journal on Recent and Innovation Trends in Computing and Communication 11, nr 5s (10.06.2023): 536–42. http://dx.doi.org/10.17762/ijritcc.v11i5s.7130.
Pełny tekst źródłaShoaib, Mohamed R., Mohamed R. Elshamy, Taha E. Taha, Adel S. El-Fishawy i Fathi E. Abd El-Samie. "Efficient Brain Tumor Detection Based on Deep Learning Models". Journal of Physics: Conference Series 2128, nr 1 (1.12.2021): 012012. http://dx.doi.org/10.1088/1742-6596/2128/1/012012.
Pełny tekst źródłaHasan, Md Kamrul, Tanjum Tanha, Md Ruhul Amin, Omar Faruk, Mohammad Monirujjaman Khan, Sultan Aljahdali i Mehedi Masud. "Cataract Disease Detection by Using Transfer Learning-Based Intelligent Methods". Computational and Mathematical Methods in Medicine 2021 (8.12.2021): 1–11. http://dx.doi.org/10.1155/2021/7666365.
Pełny tekst źródłaAnilkumar, Chunduru, Robbi Jyothsna, Sattaru Vandana Sree i E. Gothai. "Deep Learning-Based Yoga Posture Specification Using OpenCV and Media Pipe". Applied and Computational Engineering 8, nr 1 (1.08.2023): 80–86. http://dx.doi.org/10.54254/2755-2721/8/20230085.
Pełny tekst źródłaAl-Shargabi, Amal A., Jowharah F. Alshobaili, Abdulatif Alabdulatif i Naseem Alrobah. "COVID-CGAN: Efficient Deep Learning Approach for COVID-19 Detection Based on CXR Images Using Conditional GANs". Applied Sciences 11, nr 16 (4.08.2021): 7174. http://dx.doi.org/10.3390/app11167174.
Pełny tekst źródłaMiserlis, Dimitrios, Yuvaraj Munian, Lucas M. Ferrer Cardona, Pedro G. R. Teixeira, Joseph J. DuBose, Mark G. Davies, William Bohannon, Panagiotis Koutakis i Miltiadis Alamaniotis. "Benchmarking EfficientNetB7, InceptionResNetV2, InceptionV3, and Xception Artificial Neural Networks Applications for Aortic Pathologies Analysis". Journal of Vascular Surgery 77, nr 6 (czerwiec 2023): e345. http://dx.doi.org/10.1016/j.jvs.2023.03.475.
Pełny tekst źródłaChada, Govind. "Machine Learning Models for Abnormality Detection in Musculoskeletal Radiographs". Reports 2, nr 4 (22.10.2019): 26. http://dx.doi.org/10.3390/reports2040026.
Pełny tekst źródłaSilva, Luan Oliveira, Leandro dos Santos Araújo, Victor Ferreira Souza, Raimundo Matos Barros Neto i Adam Santos. "Comparative Analysis of Convolutional Neural Networks Applied in the Detection of Pneumonia Through X-Ray Images of Children". Learning and Nonlinear Models 18, nr 2 (30.06.2021): 4–15. http://dx.doi.org/10.21528/lnlm-vol18-no2-art1.
Pełny tekst źródłaRho, Jinhyung, Sung-Min Shin, Kyoungsun Jhang, Gwanghee Lee, Keun-Ho Song, Hyunguk Shin, Kiwon Na, Hyo-Jung Kwon i Hwa-Young Son. "Deep learning-based diagnosis of feline hypertrophic cardiomyopathy". PLOS ONE 18, nr 2 (2.02.2023): e0280438. http://dx.doi.org/10.1371/journal.pone.0280438.
Pełny tekst źródłaXia, Jun, Hongjiang Liu i Linfu Zhu. "Landslide Hazard Identification Based on Deep Learning and Sentinel-2 Remote Sensing Imagery". Journal of Physics: Conference Series 2258, nr 1 (1.04.2022): 012031. http://dx.doi.org/10.1088/1742-6596/2258/1/012031.
Pełny tekst źródłaHarahap, Mawaddah, Em Manuel Laia, Lilis Suryani Sitanggang, Melda Sinaga, Daniel Franci Sihombing i Amir Mahmud Husein. "Deteksi Penyakit Covid-19 Pada Citra X-Ray Dengan Pendekatan Convolutional Neural Network (CNN)". Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 6, nr 1 (27.02.2022): 70–77. http://dx.doi.org/10.29207/resti.v6i1.3373.
Pełny tekst źródłaXie, Qinghua, Pengyu Chen, Zhaohuan Li i Renfeng Xie. "Automatic Segmentation and Classification for Antinuclear Antibody Images Based on Deep Learning". Computational Intelligence and Neuroscience 2023 (8.02.2023): 1–9. http://dx.doi.org/10.1155/2023/1353965.
Pełny tekst źródłaNguyen, Viet Dung, Ngoc Dung Bui i Hoang Khoi Do. "Skin Lesion Classification on Imbalanced Data Using Deep Learning with Soft Attention". Sensors 22, nr 19 (4.10.2022): 7530. http://dx.doi.org/10.3390/s22197530.
Pełny tekst źródłaLi, James, Chieh-Ju Chao, Jiwoong Jason Jeong, Juan Maria Farina, Amith R. Seri, Timothy Barry, Hana Newman i in. "Developing an Echocardiography-Based, Automatic Deep Learning Framework for the Differentiation of Increased Left Ventricular Wall Thickness Etiologies". Journal of Imaging 9, nr 2 (18.02.2023): 48. http://dx.doi.org/10.3390/jimaging9020048.
Pełny tekst źródłaKumar Dasari, Sunil, i Shilpa Mehta. "Scene Based Text Recognition From Natural Images and Classification Based on Hybrid CNN Models with Performance Evaluation". International journal of electrical and computer engineering systems 14, nr 3 (28.03.2023): 293–300. http://dx.doi.org/10.32985/ijeces.14.3.7.
Pełny tekst źródłaEmara, Heba M., Mohamed R. Shoaib, Walid El-Shafai, Mohamed Elwekeil, Ezz El-Din Hemdan, Mostafa M. Fouda, Taha E. Taha, Adel S. El-Fishawy, El-Sayed M. El-Rabaie i Fathi E. Abd El-Samie. "Simultaneous Super-Resolution and Classification of Lung Disease Scans". Diagnostics 13, nr 7 (2.04.2023): 1319. http://dx.doi.org/10.3390/diagnostics13071319.
Pełny tekst źródłaMousavi, Seyed Mohammad, i Soodeh Hosseini. "A Convolutional Neural Network Model for Detection of COVID -19 Disease and Pneumonia". Journal of Health and Biomedical Informatics 10, nr 1 (22.05.2023): 41–56. http://dx.doi.org/10.34172/jhbmi.2023.13.
Pełny tekst źródłaDuman, Burhan, i Ahmet Ali Süzen. "A Study on Deep Learning Based Classification of Flower Images". International Journal of Advanced Networking and Applications 14, nr 02 (2022): 5385–89. http://dx.doi.org/10.35444/ijana.2022.14209.
Pełny tekst źródłaNassif, Ali Bou, Ismail Shahin, Mohamed Bader, Abdelfatah Hassan i Naoufel Werghi. "COVID-19 Detection Systems Using Deep-Learning Algorithms Based on Speech and Image Data". Mathematics 10, nr 4 (11.02.2022): 564. http://dx.doi.org/10.3390/math10040564.
Pełny tekst źródłaKiratiratanapruk, Kantip, Pitchayagan Temniranrat, Wasin Sinthupinyo, Panintorn Prempree, Kosom Chaitavon, Supanit Porntheeraphat i Anchalee Prasertsak. "Development of Paddy Rice Seed Classification Process using Machine Learning Techniques for Automatic Grading Machine". Journal of Sensors 2020 (1.07.2020): 1–14. http://dx.doi.org/10.1155/2020/7041310.
Pełny tekst źródłaBoonsim, Noppakun, i Saranya Kanjaruek. "Optimized transfer learning for polyp detection". ECTI Transactions on Computer and Information Technology (ECTI-CIT) 17, nr 1 (18.02.2023): 73–81. http://dx.doi.org/10.37936/ecti-cit.2023171.250910.
Pełny tekst źródłaPathik, Nikhlesh, Rajeev Kumar Gupta, Yatendra Sahu, Ashutosh Sharma, Mehedi Masud i Mohammed Baz. "AI Enabled Accident Detection and Alert System Using IoT and Deep Learning for Smart Cities". Sustainability 14, nr 13 (24.06.2022): 7701. http://dx.doi.org/10.3390/su14137701.
Pełny tekst źródłaZhang, Shanxin, Hao Feng, Shaoyu Han, Zhengkai Shi, Haoran Xu, Yang Liu, Haikuan Feng, Chengquan Zhou i Jibo Yue. "Monitoring of Soybean Maturity Using UAV Remote Sensing and Deep Learning". Agriculture 13, nr 1 (30.12.2022): 110. http://dx.doi.org/10.3390/agriculture13010110.
Pełny tekst źródłaDessai, Amita, i Hassanali Virani. "Emotion Classification Based on CWT of ECG and GSR Signals Using Various CNN Models". Electronics 12, nr 13 (24.06.2023): 2795. http://dx.doi.org/10.3390/electronics12132795.
Pełny tekst źródłaReza, Ahmed Wasif, Md Mahamudul Hasan, Nazla Nowrin i Mir Moynuddin Ahmed Shibly. "Pre-trained deep learning models in automatic COVID-19 diagnosis". Indonesian Journal of Electrical Engineering and Computer Science 22, nr 3 (1.06.2021): 1540. http://dx.doi.org/10.11591/ijeecs.v22.i3.pp1540-1547.
Pełny tekst źródłaRandellini, Enrico, Leonardo Rigutini i Claudio Saccà. "Data Augmentation Techniques and Transfer Learning Approaches Applied to Facial Expressions Recognition Systems". International Journal of Artificial Intelligence & Applications 13, nr 1 (31.01.2022): 55–72. http://dx.doi.org/10.5121/ijaia.2022.13104.
Pełny tekst źródłaSaumya Salian i Sudhir Sawarkar. "Skin Lesion Classification towards Melanoma Detection Using EfficientNetB3". Advances in Technology Innovation 8, nr 1 (1.01.2023): 59–72. http://dx.doi.org/10.46604/aiti.2023.9488.
Pełny tekst źródłaAhamed, Md Faysal, Md Khalid Syfullah, Ovi Sarkar, Md Tohidul Islam, Md Nahiduzzaman, Md Rabiul Islam, Amith Khandakar, Mohamed Arselene Ayari i Muhammad E. H. Chowdhury. "IRv2-Net: A Deep Learning Framework for Enhanced Polyp Segmentation Performance Integrating InceptionResNetV2 and UNet Architecture with Test Time Augmentation Techniques". Sensors 23, nr 18 (7.09.2023): 7724. http://dx.doi.org/10.3390/s23187724.
Pełny tekst źródłaJulianto, Afis, i Andi Sunyoto. "A performance evaluation of convolutional neural network architecture for classification of rice leaf disease". IAES International Journal of Artificial Intelligence (IJ-AI) 10, nr 4 (1.12.2021): 1069. http://dx.doi.org/10.11591/ijai.v10.i4.pp1069-1078.
Pełny tekst źródłaIsmail, Aya, Marwa Elpeltagy, Mervat S. Zaki i Kamal Eldahshan. "A New Deep Learning-Based Methodology for Video Deepfake Detection Using XGBoost". Sensors 21, nr 16 (10.08.2021): 5413. http://dx.doi.org/10.3390/s21165413.
Pełny tekst źródłaHuang, Kai, Xiaoyu He, Zhentao Jin, Lisha Wu, Xinyu Zhao, Zhe Wu, Xian Wu i in. "Assistant Diagnosis of Basal Cell Carcinoma and Seborrheic Keratosis in Chinese Population Using Convolutional Neural Network". Journal of Healthcare Engineering 2020 (3.08.2020): 1–8. http://dx.doi.org/10.1155/2020/1713904.
Pełny tekst źródłaCheng, Wen-Chang, Hung-Chou Hsiao i Li-Hua Li. "Deep Learning Mask Face Recognition with Annealing Mechanism". Applied Sciences 13, nr 2 (4.01.2023): 732. http://dx.doi.org/10.3390/app13020732.
Pełny tekst źródłaFang, Xin, Tong Zhen i Zhihui Li. "Lightweight Multiscale CNN Model for Wheat Disease Detection". Applied Sciences 13, nr 9 (8.05.2023): 5801. http://dx.doi.org/10.3390/app13095801.
Pełny tekst źródłaMondhe, Parag Jayant, Manisha P. Satone i Namrata N. Wasatkar. "Generating captions in English and Marathi language for describing health of cotton plant". Indonesian Journal of Electrical Engineering and Computer Science 32, nr 1 (1.10.2023): 571. http://dx.doi.org/10.11591/ijeecs.v32.i1.pp571-578.
Pełny tekst źródłaIskanderani, Ahmed I., Ibrahim M. Mehedi, Abdulah Jeza Aljohani, Mohammad Shorfuzzaman, Farzana Akther, Thangam Palaniswamy, Shaikh Abdul Latif, Abdul Latif i Aftab Alam. "Artificial Intelligence and Medical Internet of Things Framework for Diagnosis of Coronavirus Suspected Cases". Journal of Healthcare Engineering 2021 (28.05.2021): 1–7. http://dx.doi.org/10.1155/2021/3277988.
Pełny tekst źródłaAhmed, Tawsin Uddin, Mohammad Newaj Jamil, Mohammad Shahadat Hossain, Raihan Ul Islam i Karl Andersson. "An Integrated Deep Learning and Belief Rule Base Intelligent System to Predict Survival of COVID-19 Patient under Uncertainty". Cognitive Computation 14, nr 2 (16.12.2021): 660–76. http://dx.doi.org/10.1007/s12559-021-09978-8.
Pełny tekst źródłaKensert, Alexander, Philip J. Harrison i Ola Spjuth. "Transfer Learning with Deep Convolutional Neural Networks for Classifying Cellular Morphological Changes". SLAS DISCOVERY: Advancing the Science of Drug Discovery 24, nr 4 (14.01.2019): 466–75. http://dx.doi.org/10.1177/2472555218818756.
Pełny tekst źródłaSarker, Md Mostafa Kamal, Farhan Akram, Mohammad Alsharid, Vivek Kumar Singh, Robail Yasrab i Eyad Elyan. "Efficient Breast Cancer Classification Network with Dual Squeeze and Excitation in Histopathological Images". Diagnostics 13, nr 1 (29.12.2022): 103. http://dx.doi.org/10.3390/diagnostics13010103.
Pełny tekst źródłaDzierżak, Róża, i Zbigniew Omiotek. "Application of Deep Convolutional Neural Networks in the Diagnosis of Osteoporosis". Sensors 22, nr 21 (26.10.2022): 8189. http://dx.doi.org/10.3390/s22218189.
Pełny tekst źródłaGómez-Guzmán, Marco Antonio, Laura Jiménez-Beristaín, Enrique Efren García-Guerrero, Oscar Roberto López-Bonilla, Ulises Jesús Tamayo-Perez, José Jaime Esqueda-Elizondo, Kenia Palomino-Vizcaino i Everardo Inzunza-González. "Classifying Brain Tumors on Magnetic Resonance Imaging by Using Convolutional Neural Networks". Electronics 12, nr 4 (14.02.2023): 955. http://dx.doi.org/10.3390/electronics12040955.
Pełny tekst źródłaVelasco, Jessica S., Jomer V. Catipon, Edmund G. Monilar, Villamor M. Amon, Glenn C. Virrey i Lean Karlo S. Tolentino. "Classification of Skin Disease Using Transfer Learning in Convolutional Neural Networks". International Journal of Emerging Technology and Advanced Engineering 13, nr 4 (5.04.2023): 1–7. http://dx.doi.org/10.46338/ijetae0423_01.
Pełny tekst źródła