Gotowa bibliografia na temat „InceptionResNetV2”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „InceptionResNetV2”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "InceptionResNetV2"
Ullah, Naeem, Javed Ali Khan, Mohammad Sohail Khan, Wahab Khan, Izaz Hassan, Marwa Obayya, Noha Negm i Ahmed S. Salama. "An Effective Approach to Detect and Identify Brain Tumors Using Transfer Learning". Applied Sciences 12, nr 11 (2.06.2022): 5645. http://dx.doi.org/10.3390/app12115645.
Pełny tekst źródłaYazid Aufar, Muhammad Helmy Abdillah i Jiki Romadoni. "Web-based CNN Application for Arabica Coffee Leaf Disease Prediction in Smart Agriculture". Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 7, nr 1 (2.02.2023): 71–79. http://dx.doi.org/10.29207/resti.v7i1.4622.
Pełny tekst źródłaJiang, Kaiyuan, Jiawei Zhang, Haibin Wu, Aili Wang i Yuji Iwahori. "A Novel Digital Modulation Recognition Algorithm Based on Deep Convolutional Neural Network". Applied Sciences 10, nr 3 (9.02.2020): 1166. http://dx.doi.org/10.3390/app10031166.
Pełny tekst źródłaFaruk, Omar, Eshan Ahmed, Sakil Ahmed, Anika Tabassum, Tahia Tazin, Sami Bourouis i Mohammad Monirujjaman Khan. "A Novel and Robust Approach to Detect Tuberculosis Using Transfer Learning". Journal of Healthcare Engineering 2021 (25.11.2021): 1–10. http://dx.doi.org/10.1155/2021/1002799.
Pełny tekst źródłaAl-Timemy, Ali H., Laith Alzubaidi, Zahraa M. Mosa, Hazem Abdelmotaal, Nebras H. Ghaeb, Alexandru Lavric, Rossen M. Hazarbassanov, Hidenori Takahashi, Yuantong Gu i Siamak Yousefi. "A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning". Diagnostics 13, nr 10 (10.05.2023): 1689. http://dx.doi.org/10.3390/diagnostics13101689.
Pełny tekst źródłaCheng, Wen-Chang, Hung-Chou Hsiao, Yung-Fa Huang i Li-Hua Li. "Combining Classifiers for Deep Learning Mask Face Recognition". Information 14, nr 7 (21.07.2023): 421. http://dx.doi.org/10.3390/info14070421.
Pełny tekst źródłaMahdianpari, Masoud, Bahram Salehi, Mohammad Rezaee, Fariba Mohammadimanesh i Yun Zhang. "Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery". Remote Sensing 10, nr 7 (14.07.2018): 1119. http://dx.doi.org/10.3390/rs10071119.
Pełny tekst źródłaPohtongkam, Somchai, i Jakkree Srinonchat. "Tactile Object Recognition for Humanoid Robots Using New Designed Piezoresistive Tactile Sensor and DCNN". Sensors 21, nr 18 (8.09.2021): 6024. http://dx.doi.org/10.3390/s21186024.
Pełny tekst źródłaMondal, M. Rubaiyat Hossain, Subrato Bharati i Prajoy Podder. "CO-IRv2: Optimized InceptionResNetV2 for COVID-19 detection from chest CT images". PLOS ONE 16, nr 10 (28.10.2021): e0259179. http://dx.doi.org/10.1371/journal.pone.0259179.
Pełny tekst źródłaAngurala, Mohit. "Augmented MRI Images for Classification of Normal and Tumors Brain through Transfer Learning Techniques". International Journal on Recent and Innovation Trends in Computing and Communication 11, nr 5s (10.06.2023): 536–42. http://dx.doi.org/10.17762/ijritcc.v11i5s.7130.
Pełny tekst źródłaCzęści książek na temat "InceptionResNetV2"
Ganesh, Mukkesh, Sanjana Dulam i Pattabiraman Venkatasubbu. "Diabetic Retinopathy Diagnosis with InceptionResNetV2, Xception, and EfficientNetB3". W Artificial Intelligence and Technologies, 405–13. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6448-9_41.
Pełny tekst źródłaSharma, Osho, Akashdeep Sharma i Arvind Kalia. "Windows Malware Hunting with InceptionResNetv2 Assisted Malware Visualization Approach". W Proceedings of International Conference on Computational Intelligence and Data Engineering, 171–88. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0609-3_12.
Pełny tekst źródłaVodnala, Deepika, Konkathi Shreya, Maduru Sandhya i Cholleti Varsha. "Skin Cancer Detection Using Convolutional Neural Networks and InceptionResNetV2". W Algorithms for Intelligent Systems, 595–604. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7041-2_50.
Pełny tekst źródłaAkhand, Md Nafis Tahmid, Sunanda Das i Mahmudul Hasan. "Traffic Density Estimation Using Transfer Learning with Pre-trained InceptionResNetV2 Network". W Machine Intelligence and Data Science Applications, 363–75. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2347-0_28.
Pełny tekst źródłaSimon, Philomina, i V. Uma. "Integrating InceptionResNetv2 Model and Machine Learning Classifiers for Food Texture Classification". W Advances in Cognitive Science and Communications, 531–39. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8086-2_51.
Pełny tekst źródłaSingh, Rahul, Avinash Sharma, Neha Sharma, Kulbhushan Sharma i Rupesh Gupta. "A Deep Learning-Based InceptionResNet V2 Model for Cassava Leaf Disease Detection". W Emerging Trends in Expert Applications and Security, 423–32. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1946-8_38.
Pełny tekst źródłaMuralikrishnan, Madhuvanti, i R. Anitha. "Comparison of Breast Cancer Multi-class Classification Accuracy Based on Inception and InceptionResNet Architecture". W Emerging Trends in Computing and Expert Technology, 1155–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32150-5_118.
Pełny tekst źródłaSharma, Aditya, Arshdeep Singh Chudey i Mrityunjay Singh. "COVID-19 Detection Using Chest X-Ray and Transfer Learning". W Handbook of Research on Machine Learning Techniques for Pattern Recognition and Information Security, 171–86. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3299-7.ch011.
Pełny tekst źródłaKalinathan, Lekshmi, Deepika Sivasankaran, Janet Reshma Jeyasingh, Amritha Sennappa Sudharsan i Hareni Marimuthu. "Classification of Hepatocellular Carcinoma Using Machine Learning". W Hepatocellular Carcinoma - Challenges and Opportunities of a Multidisciplinary Approach [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99841.
Pełny tekst źródłaStreszczenia konferencji na temat "InceptionResNetV2"
Guefrechi, Sarra, Marwa Ben Jabra i Habib Hamam. "Deepfake video detection using InceptionResnetV2". W 2022 6th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). IEEE, 2022. http://dx.doi.org/10.1109/atsip55956.2022.9805902.
Pełny tekst źródłaNaveenkumar, M., S. Srithar, B. Rajesh Kumar, S. Alagumuthukrishnan i P. Baskaran. "InceptionResNetV2 for Plant Leaf Disease Classification". W 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). IEEE, 2021. http://dx.doi.org/10.1109/i-smac52330.2021.9641025.
Pełny tekst źródłaKesiman, Made Windu Antara, Kadek Teguh Dermawan i I. Gede Mahendra Darmawiguna. "Balinese Carving Ornaments Classification Using InceptionResnetV2 Architecture". W 2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM). IEEE, 2022. http://dx.doi.org/10.1109/cenim56801.2022.10037265.
Pełny tekst źródłaJethwa, Nishant, Hamza Gabajiwala, Arundhati Mishra, Parth Joshi i Prachi Natu. "Comparative Analysis between InceptionResnetV2 and InceptionV3 for Attention based Image Captioning". W 2021 2nd Global Conference for Advancement in Technology (GCAT). IEEE, 2021. http://dx.doi.org/10.1109/gcat52182.2021.9587514.
Pełny tekst źródłaGhadiri, Ali, Afrooz Sheikholeslami i Asiyeh Bahaloo. "Multi-label detection of ophthalmic disorders using InceptionResNetV2 on multiple datasets". W 2022 8th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS). IEEE, 2022. http://dx.doi.org/10.1109/icspis56952.2022.10043998.
Pełny tekst źródłaSouza, Victor, Luan Silva, Adam Santos i Leandro Araújo. "Análise Comparativa de Redes Neurais Convolucionais no Reconhecimento de Cenas". W Computer on the Beach. Itajaí: Universidade do Vale do Itajaí, 2020. http://dx.doi.org/10.14210/cotb.v11n1.p419-426.
Pełny tekst źródłaRandellini, Enrico, Leonardo Rigutini i Claudio Saccà. "Data Augmentation and Transfer Learning Approaches Applied to Facial Expressions Recognition". W 2nd International Conference on NLP Techniques and Applications (NLPTA 2021). Academy and Industry Research Collaboration Center (AIRCC), 2021. http://dx.doi.org/10.5121/csit.2021.111912.
Pełny tekst źródłaChichanoski, Gustavo, i Maria Bernadete de Morais França. "System for Assistance in Diagnosis of Diseases Pulmonary". W 9th International Conference on Computer Science and Information Technology (CSIT 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.121408.
Pełny tekst źródłaZeiser, Felipe, Cristiano da Costa i Gabriel Ramos. "Convolutional Neural Networks Evaluation for COVID-19 Classification on Chest Radiographs". W LatinX in AI at International Conference on Machine Learning 2021. Journal of LatinX in AI Research, 2021. http://dx.doi.org/10.52591/lxai2021072418.
Pełny tekst źródłaZeiser, Felipe, Cristiano da Costa i Gabriel de Oliveira. "Convolutional Neural Networks Evaluation for COVID-19 Classification on Chest Radiographs". W LatinX in AI at International Conference on Machine Learning 2021. Journal of LatinX in AI Research, 2021. http://dx.doi.org/10.52591/lxai2021072412.
Pełny tekst źródła