Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: In situ chemical.

Artykuły w czasopismach na temat „In situ chemical”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „In situ chemical”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Kashkoush, Ismail, Rich Novak i Eric Brause. "In-Situ Chemical Concentration Control for Wafer Wet Cleaning". Journal of the IEST 41, nr 3 (14.05.1998): 24–30. http://dx.doi.org/10.17764/jiet.41.3.f573u112344t8pr5.

Pełny tekst źródła
Streszczenie:
This paper demonstrates the use of conductivity sensors to monitor and control the concentration of RCA cleaning and hydrofluoric acid (HF) etching solutions. Commercially available electrodeless conductivity sensors were used to monitor and control the concentration of these process solutions. A linear relationship between the conductivity of the solution and the chemical concentration was obtained within the range studied. A chemical injection scheme was developed to maintain the chemical concentration within specified limits. Different concentrations of RCA-based cleaning solutions and HF solutions were investigated. Results show that these techniques are suitable for monitoring and controlling the concentration of chemicals in the process tanks for better process control. These techniques provide low cost of ownership of the process by using dilute chemicals and longer bath life (i.e., a more environmentally sound process).
Style APA, Harvard, Vancouver, ISO itp.
2

Ling, Zhigang, Naruhito Hori, Tadahisa Iwata i Akio Takemura. "In-situ Analysis of Chemical Structure ofAPI Adhesive Using FT-NIR Spectroscopy". Journal of The Adhesion Society of Japan 51, s1 (2015): 322–31. http://dx.doi.org/10.11618/adhesion.51.322.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Timmerman, Craig L., i Leonard N. Zintak. "Application of In-Situ Vitrification at the Parsons Chemical Site". Remediation Journal 8, nr 2 (1998): 75–85. http://dx.doi.org/10.1002/rem.3440080208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ten Cate, J. M. "In Situ Models, Physico-Chemical Aspects". Advances in Dental Research 8, nr 2 (lipiec 1994): 125–33. http://dx.doi.org/10.1177/08959374940080020201.

Pełny tekst źródła
Streszczenie:
In situ (intra-oral) caries models are used for two purposes. First, they provide information about oral physiological processes. Such information helps to detail our knowledge of the oral ecosystem and to verify conclusions from in vitro experiments. Second, in situ models are utilized to test preventive agents in the phase between laboratory testing and clinical trials. Most investigations involving enamel inserts have been aimed at testing new dentifrices. The experimental designs of such studies usually do not allow one to draw conclusions on physico-chemical processes, e.g., because of single point measurements. Studies of model parameters (lesion type, lesion severity, and de/remineralization in time) constitute only a minority of the research reports. The most striking observation obtained with in situ models has been the significant differences in de/remineralization observed among individuals and, more importantly, within one individual during different time periods and between different sites in the same mouth (for review, see ten Cate et al., 1992). Regardless of this, some general findings can be inferred: During in situ demineralization, up to 62 vol%μm/day may be removed from enamel. For dentin specimens, this value may be as high as 89 vol%μm/day. For remineralization, during fluoride dentifrice treatment, a median deposition rate of 0.7%/day (for lesions with integrated mineral loss values between 2000 and 4000 vol%μm) is found. The rate of deposition seems to be correlated with the extent of the pre-formedlesion. This suggests that the number of sites (crystallite surface) available for calcium phosphate precipitation is an important parameter. However, the rate at which mineral ions are supplied (by saliva) could also be a limiting factor, as is shown in a theoretical analysis of mass-balance of enamel constituents. The few studies that have monitored caries development in time reveal that mineral loss (and also lesion progression in depth) from enamel in situ is linear in time. This is in contrast to results from laboratory findings.
Style APA, Harvard, Vancouver, ISO itp.
5

Marken, Frank. "Chemical and electro-chemical applications of in situ microwave heating". Annual Reports Section "C" (Physical Chemistry) 104 (2008): 124. http://dx.doi.org/10.1039/b703986g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Prien, Ralf D. "The future of chemical in situ sensors". Marine Chemistry 107, nr 3 (grudzień 2007): 422–32. http://dx.doi.org/10.1016/j.marchem.2007.01.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Wang, Fushun, Baoguo Chen, Lei Wu, Qiuhua Zhao i Lidong Zhang. "In Situ Swelling-Gated Chemical Sensing Actuator". Cell Reports Physical Science 1, nr 2 (luty 2020): 100011. http://dx.doi.org/10.1016/j.xcrp.2019.100011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gogotsi, Y., N. Naguib i J. A. Libera. "In situ chemical experiments in carbon nanotubes". Chemical Physics Letters 365, nr 3-4 (październik 2002): 354–60. http://dx.doi.org/10.1016/s0009-2614(02)01496-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Waclavek, Ján, Gabriel Krausko i Jaroslava Škriniarová. "Opticalin situ monitoring of wet chemical etching". Surface and Interface Analysis 26, nr 1 (styczeń 1998): 56–61. http://dx.doi.org/10.1002/(sici)1096-9918(199801)26:1<56::aid-sia348>3.0.co;2-j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Karpenko, Olexandr, Vira Lubenets, Elena Karpenko i Volodymyr Novikov. "Chemical Oxidants for Remediation of Contaminated Soil and Water. A Review". Chemistry & Chemical Technology 3, nr 1 (15.03.2009): 41–45. http://dx.doi.org/10.23939/chcht03.01.041.

Pełny tekst źródła
Streszczenie:
This review covers the main agents used for in situ and ex situ chemical oxidation of organic contaminants particularly oil products, in soil and water environments. Among them there are hydrogen peroxide, permanganate salts, ozone and sodium persulfate. The fields of application, as well as benefits and disadvantages of the mentioned agents use were described.
Style APA, Harvard, Vancouver, ISO itp.
11

Reddy, Ramana G., i V. Kumar. "Chemical In Situ Synthesis of Aluminum Alloy Composites". Materials Science Forum 561-565 (październik 2007): 701–4. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.701.

Pełny tekst źródła
Streszczenie:
Aluminum alloys were reinforced with AlN particles using a novel chemical in situ technique. Thermodynamic analyses were made to identify the conditions for the in situ formation of the AlN in Al alloys. Experiments were conducted in the temperature range of 1173-1473 K by injecting ammonia gas. The composites with AlN quantity varying from 5 to 51 wt % were produced. Effect of process variables such as gas injection time, flow rate of ammonia gas and temperature of the alloy melt on the formation of AlN was studied. Increase in either injection time or flow rate of the ammonia gas increased the nitride content. AlN particles with an average size of 500 nm were produced. The measured Vickers hardness of the composites formed increased with increasing AlN content. The amount of AlN experimentally formed is in good agreement with the thermodynamically predicted data.
Style APA, Harvard, Vancouver, ISO itp.
12

Schmidt-Ott, A., i P. Büscher. "In situ chemical classification of atmospheric aerosol particles". Journal of Aerosol Science 22 (1991): S307. http://dx.doi.org/10.1016/s0021-8502(05)80098-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Ohashi, Y. "Real-Time In Situ Observation of Chemical Reactions". Acta Crystallographica Section A Foundations of Crystallography 54, nr 6 (1.11.1998): 842–49. http://dx.doi.org/10.1107/s0108767398009118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Brea, Roberto J., Christian M. Cole i Neal K. Devaraj. "In Situ Vesicle Formation by Native Chemical Ligation". Angewandte Chemie 126, nr 51 (24.10.2014): 14326–29. http://dx.doi.org/10.1002/ange.201408538.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Brea, Roberto J., Christian M. Cole i Neal K. Devaraj. "In Situ Vesicle Formation by Native Chemical Ligation". Angewandte Chemie International Edition 53, nr 51 (24.10.2014): 14102–5. http://dx.doi.org/10.1002/anie.201408538.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Suthersan, Suthan, Jeff McDonough, Matt Schnobrich i Craig Divine. "In Situ Chemical Treatment: A Love-Hate Relationship". Groundwater Monitoring & Remediation 37, nr 1 (luty 2017): 17–26. http://dx.doi.org/10.1111/gwmr.12203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Vlahakis, J., C. Rogers, V. P. Manno, R. White, M. Moinpour, D. Hooper i S. Anjur. "Synchronous, In Situ Measurements in Chemical Mechanical Planarization". Journal of The Electrochemical Society 156, nr 10 (2009): H794. http://dx.doi.org/10.1149/1.3205456.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

SCHÄFER, M., R. STARZMANN i A. H. FOITZIK. "CHEMICAL MICROREACTORS FOR IN-SITU ONLINE PROCESS MONITORING". International Journal of Computational Engineering Science 04, nr 03 (wrzesień 2003): 601–4. http://dx.doi.org/10.1142/s146587630300185x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Vuillemin, R., D. Le Roux, P. Dorval, K. Bucas, J. P. Sudreau, M. Hamon, C. Le Gall i P. M. Sarradin. "CHEMINI: A new in situ CHEmical MINIaturized analyzer". Deep Sea Research Part I: Oceanographic Research Papers 56, nr 8 (sierpień 2009): 1391–99. http://dx.doi.org/10.1016/j.dsr.2009.02.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Qin, Hua, Andong Zhao i Xiaobing Fu. "Chemical modulation of cell fates: in situ regeneration". Science China Life Sciences 61, nr 10 (9.08.2018): 1137–50. http://dx.doi.org/10.1007/s11427-018-9349-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Wackett, Lawrence P. "In situ physico‐chemical methods in environmental microbiology". Environmental Microbiology 23, nr 1 (styczeń 2021): 525–26. http://dx.doi.org/10.1111/1462-2920.15379.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Liu, Min-Hsin, Chung-Ming Hsiao, Chih-En Lin i Jim Leu. "Application of Combined In Situ Chemical Reduction and Enhanced Bioremediation to Accelerate TCE Treatment in Groundwater". Applied Sciences 11, nr 18 (9.09.2021): 8374. http://dx.doi.org/10.3390/app11188374.

Pełny tekst źródła
Streszczenie:
Groundwater at trichloroethylene (TCE)-contaminated sites lacks electron donors, which prolongs TCE’s natural attenuation process and delays treatment. Although adding electron donors, such as emulsified oil, accelerates TCE degradation, it also causes the accumulation of hazardous metabolites such as dichloroethylene (DCE) and vinyl chloride (VC). This study combined in situ chemical reduction using organo-iron compounds with enhanced in situ bioremediation using emulsified oil to accelerate TCE removal and minimize the accumulation of DCE and VC in groundwater. A self-made soybean oil emulsion (SOE) was used as the electron donor and was added to liquid ferrous lactate (FL), the chemical reductant. The combined in situ chemical reduction and enhanced in situ bioremediation achieved favorable results in a laboratory microcosm test and in an in situ biological field pilot test. Both tests revealed that SOE+FL accelerated TCE degradation and minimized the accumulation of DCE and VC to a greater extent than SOE alone after 160 days of observation. When FL was added in the microcosm test, the pH value decreased from 6.0 to 5.5; however, during the in situ biological pilot test, the on-site groundwater pH value did not exhibit obvious changes. Given the geology of the in situ pilot test site, the SOE+FL solution that was injected underground continued to be released for at least 90 days, suggesting that the solution’s radius of influence was at least 5 m.
Style APA, Harvard, Vancouver, ISO itp.
23

Stock, H. R., C. Jarms, H. Berndt, B. Wielage i A. Hofmann. "In-situ and ex-situ examination of the early stages of chemical vapor deposition". Fresenius' Journal of Analytical Chemistry 361, nr 6-7 (3.08.1998): 645–46. http://dx.doi.org/10.1007/s002160050978.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Lengyel, Istvan, i Klavs F. Jensen. "A chemical mechanism for in situ boron doping during silicon chemical vapor deposition". Thin Solid Films 365, nr 2 (kwiecień 2000): 231–41. http://dx.doi.org/10.1016/s0040-6090(00)00758-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

BORMAN, STU. "IN SITU CLICK CHEMISTRY". Chemical & Engineering News 80, nr 6 (11.02.2002): 29–34. http://dx.doi.org/10.1021/cen-v080n006.p029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Shevah, Y., i M. Waldman. "In-situ and on-site treatment of groundwater (Technical Report)". Pure and Applied Chemistry 67, nr 8-9 (1.01.1995): 1549–61. http://dx.doi.org/10.1351/pac199567081549.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Koca, Atıf, Şerife Bayar, Hatice A. Dinçer i Ergün Gonca. "Voltammetric, in-situ spectroelectrochemical and in-situ electrocolorimetric characterization of phthalocyanines". Electrochimica Acta 54, nr 10 (kwiecień 2009): 2684–92. http://dx.doi.org/10.1016/j.electacta.2008.11.028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Buist, Ian, James McCourt, Steve Potter, Sy Ross i Ken Trudel. "In Situ Burning". Pure and Applied Chemistry 71, nr 1 (1.01.1999): 43–65. http://dx.doi.org/10.1351/pac199971010043.

Pełny tekst źródła
Streszczenie:
Introduction: The use of in situ burning as a spill response technique is not new, having been researched and used for a variety of oil spills since the late 1960s. In general, the technique has proved effective for oil spills in ice conditions and has been used successfully to remove oil spills in ice-covered waters resulting from storage tank and ship accidents in Alaska, Canada and Scandinavia.Although there have been numerous incidents of vessel oil spills that inadvertently caught fire, the intentional ignition of oil slicks on open water has only been seriously considered since the development of fire-resistant oil containment boom beginning in the early 1980s. The development of these booms offered the possibility of conducting controlled burns in open water conditions. In situ burning operations using these booms have been conducted at three spills in the last decade: a major offshore tanker spill, a burning blowout in an inshore environment, and a pipeline spill into a river. In situ burning of thick, fresh slicks can be initiated very quickly by igniting the oil with devices as simple as an oil-soaked sorbent pad. In situ burning can remove oil from the water surface very efficiently and at very high rates. Removal efficiencies for thick slicks can easily exceed 90%. Removal rates of 2000 m3/hr can be achieved with a fire area of only about 10,000 m2 or a circle of about 100 m in diameter. The use of towed fire containment boom to capture, thicken and isolate a portion of a spill, followed by ignition, is far less complex than the operations involved in mechanical recovery, transfer, storage, treatment and disposal. If the small quantities of residue from an efficient burn require collection, the viscous, taffy-like material can be collected and stored for further treatment and disposal. There is a limited window of opportunity for using in situ burning with the presently available technology. This window is defined by the time it takes the oil slick to emulsify; once water contents of stable emulsions exceed about 25%, most slicks are unignitable. Research is ongoing to overcome this limitation. Despite the strong incentives for considering in situ burning as a primary countermeasure method, there remains some resistance to the approach. There are two major concerns: first, the fear of causing secondary fires that threaten human life, property and natural resources; and, second, the potential environmental and human-health effects of the by-products of burning, primarily the smoke. The objective of this chapter is to review the science, technology, operational capabilities and limitations and ecological consequences of in situ burning as a countermeasure for oil spills on water. The main focus of this section is on marine oil spills in open water conditions. The use of in situ burning for spills in ice conditions is dealt with in another chapter. Much of the content of this chapter is updated from an in-depth review of in situ burning produced for the Marine Spill Response Corporation (MSRC) in 1994 (ref. 1). Interested readers are encouraged to refer to the original report for fully-referenced details of the summary presented here. The MSRC report is available from the American Petroleum Institute in Washington, DC.
Style APA, Harvard, Vancouver, ISO itp.
29

SEOL, Y. "A Review of In Situ Chemical Oxidation and Heterogeneity". Environmental and Engineering Geoscience 9, nr 1 (1.02.2003): 37–49. http://dx.doi.org/10.2113/9.1.37.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Hazard, John E., Rich Dulcey i Marie Pittignano. "IN SITU CHEMICAL OXIDATION OF CARBON DISULFIDE IMPACTED SOIL". Proceedings of the Water Environment Federation 2002, nr 14 (1.01.2002): 92–107. http://dx.doi.org/10.2175/193864702784248368.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Mirsaidov, Utkur. "Visualizing Chemical Processes in Semiconductors with In Situ TEM". Microscopy and Microanalysis 26, S2 (30.07.2020): 2038. http://dx.doi.org/10.1017/s1431927620020231.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Morrison, Shaunna M., Robert T. Downs, David F. Blake, David T. Vaniman, Douglas W. Ming, Allan H. Treiman, Cherie N. Achilles i in. "Predicting Martian mineral compositions in situ: crystal chemical techniques". Acta Crystallographica Section A Foundations and Advances 75, a1 (20.07.2019): a202. http://dx.doi.org/10.1107/s0108767319098015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Mann, J. R., N. Vora i I. L. Repins. "In Situ thickness measurements of chemical bath-deposited CdS". Solar Energy Materials and Solar Cells 94, nr 2 (luty 2010): 333–37. http://dx.doi.org/10.1016/j.solmat.2009.10.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Watts, Richard J., Mushtaque Ahmad, Amanda K. Hohner i Amy L. Teel. "Persulfate activation by glucose for in situ chemical oxidation". Water Research 133 (kwiecień 2018): 247–54. http://dx.doi.org/10.1016/j.watres.2018.01.050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Takahashi, Yasufumi, Yuanshu Zhou i Takeshi Fukuma. "In situ chemical sensing by using scanning probe microscope". Folia Pharmacologica Japonica 153, nr 6 (2019): 267–72. http://dx.doi.org/10.1254/fpj.153.267.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Pac, Timothy J., James Baldock, Brendan Brodie, Jennifer Byrd, Beatriz Gil, Kevin A. Morris, Denice Nelson i in. "In situ chemical oxidation: Lessons learned at multiple sites". Remediation Journal 29, nr 2 (28.02.2019): 75–91. http://dx.doi.org/10.1002/rem.21591.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Nießner, Reinhard. "Chemical Characterization of Aerosols: On-Line and In Situ". Angewandte Chemie International Edition in English 30, nr 5 (maj 1991): 466–76. http://dx.doi.org/10.1002/anie.199104661.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Ertl, G. "In-situ-Investigations of Physico-Chemical Processes at Interfaces". Berichte der Bunsengesellschaft für physikalische Chemie 97, nr 3 (marzec 1993): 279. http://dx.doi.org/10.1002/bbpc.19930970302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Sasaki, K., i J. Maier. "In situ EPR studies of chemical diffusion in oxides". Physical Chemistry Chemical Physics 2, nr 13 (2000): 3055–61. http://dx.doi.org/10.1039/b002850i.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Huling, Scott G., Randall R. Ross i Kimberly Meeker Prestbo. "In Situ Chemical Oxidation: Permanganate Oxidant Volume Design Considerations". Groundwater Monitoring & Remediation 37, nr 2 (19.01.2017): 78–86. http://dx.doi.org/10.1111/gwmr.12195.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Nuñez, L., B. A. Buchholz i G. F. Vandegrift. "Waste Remediation Using in Situ Magnetically Assisted Chemical Separation". Separation Science and Technology 30, nr 7-9 (kwiecień 1995): 1455–71. http://dx.doi.org/10.1080/01496399508010357.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Müller, B. "In situ Measurements in Lake Sediments with Chemical Sensors". Mineralogical Magazine 62A, nr 2 (1998): 1034–35. http://dx.doi.org/10.1180/minmag.1998.62a.2.208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Cavé, Lisa, Niels Hartog, Tom Al, Beth Parker, K. Ulrich Mayer i Steven Cogswell. "Electrical Monitoring of In Situ Chemical Oxidation by Permanganate". Groundwater Monitoring & Remediation 27, nr 2 (marzec 2007): 77–84. http://dx.doi.org/10.1111/j.1745-6592.2007.00139.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Gates, Dianne D., i Robert L. Siegrist. "In-Situ Chemical Oxidation of Trichloroethylene Using Hydrogen Peroxide". Journal of Environmental Engineering 121, nr 9 (wrzesień 1995): 639–44. http://dx.doi.org/10.1061/(asce)0733-9372(1995)121:9(639).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Murali, V., A. T. Wu, L. Dass, M. R. Frost, D. B. Fraser, J. Liao i J. Crowley. "In-situ processing using rapid thermal chemical vapor deposition". Journal of Electronic Materials 18, nr 6 (listopad 1989): 731–36. http://dx.doi.org/10.1007/bf02657526.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Teo, P. S., H. N. Lim, N. M. Huang, C. H. Chia i I. Harrison. "Room temperature in situ chemical synthesis of Fe3O4/graphene". Ceramics International 38, nr 8 (grudzień 2012): 6411–16. http://dx.doi.org/10.1016/j.ceramint.2012.05.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Zhang, Long, Tingmei Wang i Peng Liu. "Polyaniline-coated halloysite nanotubes via in-situ chemical polymerization". Applied Surface Science 255, nr 5 (grudzień 2008): 2091–97. http://dx.doi.org/10.1016/j.apsusc.2008.06.187.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

CAVALCANTI, F. "In situ chemical trapping of CO/H2 surface species". Journal of Catalysis 113, nr 1 (wrzesień 1988): 1–12. http://dx.doi.org/10.1016/0021-9517(88)90232-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

TRANTER, M., M. J. SHARP, G. H. BROWN, I. C. WILLIS, B. P. HUBBARD, M. K. NIELSEN, C. C. SMART, S. GORDON, M. TULLEY i H. R. LAMB. "VARIABILITY IN THE CHEMICAL COMPOSITION OFIN SITU SUBGLACIAL MELTWATERS". Hydrological Processes 11, nr 1 (styczeń 1997): 59–77. http://dx.doi.org/10.1002/(sici)1099-1085(199701)11:1<59::aid-hyp403>3.0.co;2-s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Tarifa, J. M., C. P. A. Ruiz i J. L. M. Barillas. "ANALYZING CHEMICAL REACTION MODELS FOR IN SITU COMBUSTION PROCESS". Brazilian Journal of Petroleum and Gas 10, nr 2 (12.07.2016): 89–103. http://dx.doi.org/10.5419/bjpg2016-0008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii