Artykuły w czasopismach na temat „Improper reinforcement learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Improper reinforcement learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Dass, Shuvalaxmi, and Akbar Siami Namin. "Reinforcement Learning for Generating Secure Configurations." Electronics 10, no. 19 (2021): 2392. http://dx.doi.org/10.3390/electronics10192392.
Pełny tekst źródłaZhai, Peng, Jie Luo, Zhiyan Dong, Lihua Zhang, Shunli Wang, and Dingkang Yang. "Robust Adversarial Reinforcement Learning with Dissipation Inequation Constraint." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 5 (2022): 5431–39. http://dx.doi.org/10.1609/aaai.v36i5.20481.
Pełny tekst źródłaChen, Ya-Ling, Yan-Rou Cai, and Ming-Yang Cheng. "Vision-Based Robotic Object Grasping—A Deep Reinforcement Learning Approach." Machines 11, no. 2 (2023): 275. http://dx.doi.org/10.3390/machines11020275.
Pełny tekst źródłaBi, Yunrui, Qinglin Ding, Yijun Du, Di Liu, and Shuaihang Ren. "Intelligent Traffic Control Decision-Making Based on Type-2 Fuzzy and Reinforcement Learning." Electronics 13, no. 19 (2024): 3894. http://dx.doi.org/10.3390/electronics13193894.
Pełny tekst źródłaHurtado-Gómez, Julián, Juan David Romo, Ricardo Salazar-Cabrera, Álvaro Pachón de la Cruz, and Juan Manuel Madrid Molina. "Traffic Signal Control System Based on Intelligent Transportation System and Reinforcement Learning." Electronics 10, no. 19 (2021): 2363. http://dx.doi.org/10.3390/electronics10192363.
Pełny tekst źródłaZiwei Pan, Ziwei Pan. "Design of Interactive Cultural Brand Marketing System based on Cloud Service Platform." 網際網路技術學刊 23, no. 2 (2022): 321–34. http://dx.doi.org/10.53106/160792642022032302012.
Pełny tekst źródłaKim, Byeongjun, Gunam Kwon, Chaneun Park, and Nam Kyu Kwon. "The Task Decomposition and Dedicated Reward-System-Based Reinforcement Learning Algorithm for Pick-and-Place." Biomimetics 8, no. 2 (2023): 240. http://dx.doi.org/10.3390/biomimetics8020240.
Pełny tekst źródłaWang, Na. "Edge computing based english translation model using fuzzy semantic optimal control technique." PLOS One 20, no. 6 (2025): e0320481. https://doi.org/10.1371/journal.pone.0320481.
Pełny tekst źródłaZhu, Wangwang, Shuli Wen, Qiang Zhao, Bing Zhang, Yuqing Huang, and Miao Zhu. "Deep Reinforcement Learning Based Optimal Operation of Low-Carbon Island Microgrid with High Renewables and Hybrid Hydrogen–Energy Storage System." Journal of Marine Science and Engineering 13, no. 2 (2025): 225. https://doi.org/10.3390/jmse13020225.
Pełny tekst źródłaRitonga, Mahyudin, and Fitria Sartika. "Muyûl al-Talâmidh fî Tadrîs al-Qirâ’ah." Jurnal Alfazuna : Jurnal Pembelajaran Bahasa Arab dan Kebahasaaraban 6, no. 1 (2021): 36–52. http://dx.doi.org/10.15642/alfazuna.v6i1.1715.
Pełny tekst źródłaWang, Ruohan. "Developing an optimization model for minimizing musculoskeletal stress in repetitive motion tasks." Molecular & Cellular Biomechanics 21, no. 3 (2024): 567. http://dx.doi.org/10.62617/mcb567.
Pełny tekst źródłaWenjing Ma, Wenjing Ma, Jianguang Zhao Wenjing Ma, and Guangquan Zhu Jianguang Zhao. "Estimation on Human Motion Posture using Improved Deep Reinforcement Learning." 電腦學刊 34, no. 4 (2023): 097–110. http://dx.doi.org/10.53106/199115992023083404008.
Pełny tekst źródłaKrishnamurthy, Bhargavi, and Sajjan G. Shiva. "Large Language Model-Guided SARSA Algorithm for Dynamic Task Scheduling in Cloud Computing." Mathematics 13, no. 6 (2025): 926. https://doi.org/10.3390/math13060926.
Pełny tekst źródłaSantos, John Paul E., Joseph A. Villarama, Joseph P. Adsuara, Jordan F. Gundran, Aileen G. De Guzman, and Evelyn M. Ben. "Students’ Time Management, Academic Procrastination, and Performance during Online Science and Mathematics Classes." International Journal of Learning, Teaching and Educational Research 21, no. 12 (2022): 142–61. http://dx.doi.org/10.26803/ijlter.21.12.8.
Pełny tekst źródłaLaxmi, Gautam, and Kumar Rajneesh. "Trajectory Data to Improve Unsupervised Learning and Intrinsic." Applied Science and Biotechnology Journal for Advanced Research 3, no. 1 (2024): 16–20. https://doi.org/10.5281/zenodo.10656240.
Pełny tekst źródłaJha, Ashutosh Chandra. "Automated Firewall Policy Generation with Reinforcement Learning." International journal of IoT 5, no. 1 (2025): 190–211. https://doi.org/10.55640/ijiot-05-01-10.
Pełny tekst źródłaBalkrishna, Rasiklal Yadav. "Machine Learning Algorithms: Optimizing Efficiency in AI Applications." International Journal of Engineering and Management Research 14, no. 5 (2024): 49–57. https://doi.org/10.5281/zenodo.14005017.
Pełny tekst źródłaMinghai Yuan, Minghai Yuan, Chenxi Zhang Minghai Yuan, Kaiwen Zhou Chenxi Zhang, and Fengque Pei Kaiwen Zhou. "Real-time Allocation of Shared Parking Spaces Based on Deep Reinforcement Learning." 網際網路技術學刊 24, no. 1 (2023): 035–43. http://dx.doi.org/10.53106/160792642023012401004.
Pełny tekst źródłaWest, Joseph, Frederic Maire, Cameron Browne, and Simon Denman. "Improved reinforcement learning with curriculum." Expert Systems with Applications 158 (November 2020): 113515. http://dx.doi.org/10.1016/j.eswa.2020.113515.
Pełny tekst źródłaAgrawal, Avinash J., Rashmi R. Welekar, Namita Parati, Pravin R. Satav, Uma Patel Thakur, and Archana V. Potnurwar. "Reinforcement Learning and Advanced Reinforcement Learning to Improve Autonomous Vehicle Planning." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 7s (2023): 652–60. http://dx.doi.org/10.17762/ijritcc.v11i7s.7526.
Pełny tekst źródłaLittman, Michael L. "Reinforcement learning improves behaviour from evaluative feedback." Nature 521, no. 7553 (2015): 445–51. http://dx.doi.org/10.1038/nature14540.
Pełny tekst źródłaLuo, Teng. "Improved reinforcement learning algorithm for mobile robot path planning." ITM Web of Conferences 47 (2022): 02030. http://dx.doi.org/10.1051/itmconf/20224702030.
Pełny tekst źródłaMcLaverty, Brian, Robert S. Parker, and Gilles Clermont. "Reinforcement learning algorithm to improve intermittent hemodialysis." Journal of Critical Care 74 (April 2023): 154205. http://dx.doi.org/10.1016/j.jcrc.2022.154205.
Pełny tekst źródłaYing-Ming Shi, Ying-Ming Shi, and Zhiyuan Zhang Ying-Ming Shi. "Research on Path Planning Strategy of Rescue Robot Based on Reinforcement Learning." 電腦學刊 33, no. 3 (2022): 187–94. http://dx.doi.org/10.53106/199115992022063303015.
Pełny tekst źródłaLecarpentier, Erwan, David Abel, Kavosh Asadi, Yuu Jinnai, Emmanuel Rachelson, and Michael L. Littman. "Lipschitz Lifelong Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 8270–78. http://dx.doi.org/10.1609/aaai.v35i9.17006.
Pełny tekst źródłaZhang, Jingjing, Yanlong Liu, and Weidong Zhou. "Adaptive Sampling Path Planning for a 3D Marine Observation Platform Based on Evolutionary Deep Reinforcement Learning." Journal of Marine Science and Engineering 11, no. 12 (2023): 2313. http://dx.doi.org/10.3390/jmse11122313.
Pełny tekst źródłaMa, Guoqing, Zhifu Wang, Xianfeng Yuan, and Fengyu Zhou. "Improving Model-Based Deep Reinforcement Learning with Learning Degree Networks and Its Application in Robot Control." Journal of Robotics 2022 (March 4, 2022): 1–14. http://dx.doi.org/10.1155/2022/7169594.
Pełny tekst źródłaGonzález-Garduño, Ana V. "Reinforcement Learning for Improved Low Resource Dialogue Generation." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 9884–85. http://dx.doi.org/10.1609/aaai.v33i01.33019884.
Pełny tekst źródłaKuremoto, Takashi, Tetsuya Tsurusaki, Kunikazu Kobayashi, Shingo Mabu, and Masanao Obayashi. "An Improved Reinforcement Learning System Using Affective Factors." Robotics 2, no. 3 (2013): 149–64. http://dx.doi.org/10.3390/robotics2030149.
Pełny tekst źródłaYao, Guangyu, Nan Zhang, Zhenhua Duan, and Cong Tian. "Improved SARSA and DQN algorithms for reinforcement learning." Theoretical Computer Science 1027 (February 2025): 115025. https://doi.org/10.1016/j.tcs.2024.115025.
Pełny tekst źródłaFRIEDRICH, JOHANNES, ROBERT URBANCZIK, and WALTER SENN. "CODE-SPECIFIC LEARNING RULES IMPROVE ACTION SELECTION BY POPULATIONS OF SPIKING NEURONS." International Journal of Neural Systems 24, no. 05 (2014): 1450002. http://dx.doi.org/10.1142/s0129065714500026.
Pełny tekst źródłaZhang, Gaohan. "Synergistic advantages of deep learning and reinforcement learning in economic forecasting." International Journal of Global Economics and Management 1, no. 1 (2023): 89–95. http://dx.doi.org/10.62051/ijgem.v1n1.13.
Pełny tekst źródłaChen, Yinhe. "Enhancing stability and explainability in reinforcement learning with machine learning." Applied and Computational Engineering 101, no. 1 (2024): 25–34. http://dx.doi.org/10.54254/2755-2721/101/20240943.
Pełny tekst źródłaSzepesvári, Csaba, and Michael L. Littman. "A Unified Analysis of Value-Function-Based Reinforcement-Learning Algorithms." Neural Computation 11, no. 8 (1999): 2017–60. http://dx.doi.org/10.1162/089976699300016070.
Pełny tekst źródłaZhang, Lige, and Zhen Tian. "Research on Music Emotional Expression Based on Reinforcement Learning and Multimodal Information." Mobile Information Systems 2022 (June 30, 2022): 1–8. http://dx.doi.org/10.1155/2022/2616220.
Pełny tekst źródłaSingh, Anunay, Anveet Pal, and Ashish Baghel. "Resolving the Cold-Start Issue in Recommender Systems with Reinforcement Learning." International Scientific Journal of Engineering and Management 04, no. 03 (2025): 1–7. https://doi.org/10.55041/isjem02367.
Pełny tekst źródłaZhou, Minghui. "Multithreshold Microbial Image Segmentation Using Improved Deep Reinforcement Learning." Mathematical Problems in Engineering 2022 (August 23, 2022): 1–11. http://dx.doi.org/10.1155/2022/5096298.
Pełny tekst źródłaKaddour, N., P. Del Moral, and E. Ikonen. "Improved version of the McMurtry-Fu reinforcement learning scheme." International Journal of Systems Science 34, no. 1 (2003): 37–47. http://dx.doi.org/10.1080/0020772031000115560.
Pełny tekst źródłaShi, Zhen, Keyin Wang, and Jianhui Zhang. "Improved reinforcement learning path planning algorithm integrating prior knowledge." PLOS ONE 18, no. 5 (2023): e0284942. http://dx.doi.org/10.1371/journal.pone.0284942.
Pełny tekst źródłaLi, Lihong, Vadim Bulitko, and Russell Greiner. "Focus of Attention in Reinforcement Learning." JUCS - Journal of Universal Computer Science 13, no. (9) (2007): 1246–69. https://doi.org/10.3217/jucs-013-09-1246.
Pełny tekst źródłaYang, Yana, Meng Xi, Huiao Dai, Jiabao Wen, and Jiachen Yang. "Z-Score Experience Replay in Off-Policy Deep Reinforcement Learning." Sensors 24, no. 23 (2024): 7746. https://doi.org/10.3390/s24237746.
Pełny tekst źródłaNi, Jianjun, Yu Gu, Guangyi Tang, Chunyan Ke, and Yang Gu. "Cooperative Coverage Path Planning for Multi-Mobile Robots Based on Improved K-Means Clustering and Deep Reinforcement Learning." Electronics 13, no. 5 (2024): 944. http://dx.doi.org/10.3390/electronics13050944.
Pełny tekst źródłaZhao, Yongqi, Zhangdong Wei, and Jing Wen. "Prediction of Soil Heavy Metal Content Based on Deep Reinforcement Learning." Scientific Programming 2022 (April 15, 2022): 1–10. http://dx.doi.org/10.1155/2022/1476565.
Pełny tekst źródłaBekele, Yared Zerihun, and Young-June Choi. "Random Access Using Deep Reinforcement Learning in Dense Mobile Networks." Sensors 21, no. 9 (2021): 3210. http://dx.doi.org/10.3390/s21093210.
Pełny tekst źródłaKoga, Marcelo L., Valdinei Freire, and Anna H. R. Costa. "Stochastic Abstract Policies: Generalizing Knowledge to Improve Reinforcement Learning." IEEE Transactions on Cybernetics 45, no. 1 (2015): 77–88. http://dx.doi.org/10.1109/tcyb.2014.2319733.
Pełny tekst źródłaZhao, Tinglong, Ming Wang, Qianchuan Zhao, Xuehan Zheng, and He Gao. "A Path-Planning Method Based on Improved Soft Actor-Critic Algorithm for Mobile Robots." Biomimetics 8, no. 6 (2023): 481. http://dx.doi.org/10.3390/biomimetics8060481.
Pełny tekst źródłaFawzi, Alhussein, Matej Balog, Aja Huang, et al. "Discovering faster matrix multiplication algorithms with reinforcement learning." Nature 610, no. 7930 (2022): 47–53. http://dx.doi.org/10.1038/s41586-022-05172-4.
Pełny tekst źródłaTantu, Year Rezeki Patricia, and Kirey Eleison Oloi Marina. "Teachers' efforts to improve discipline of elementary school students using positive reinforcement methods in online learning." JURNAL PENDIDIKAN DASAR NUSANTARA 8, no. 2 (2023): 288–98. http://dx.doi.org/10.29407/jpdn.v8i2.19118.
Pełny tekst źródłaZheng, Shujian, Chudi Zhang, Jun Hu, and Shiyou Xu. "Radar-Jamming Decision-Making Based on Improved Q-Learning and FPGA Hardware Implementation." Remote Sensing 16, no. 7 (2024): 1190. http://dx.doi.org/10.3390/rs16071190.
Pełny tekst źródłaWang, Zhijian, Jianpeng Yang, Qiang Zhang, and Li Wang. "Risk-Aware Travel Path Planning Algorithm Based on Reinforcement Learning during COVID-19." Sustainability 14, no. 20 (2022): 13364. http://dx.doi.org/10.3390/su142013364.
Pełny tekst źródła