Artykuły w czasopismach na temat „Improper reinforcement learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Improper reinforcement learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Dass, Shuvalaxmi, and Akbar Siami Namin. "Reinforcement Learning for Generating Secure Configurations." Electronics 10, no. 19 (2021): 2392. http://dx.doi.org/10.3390/electronics10192392.
Pełny tekst źródłaZhai, Peng, Jie Luo, Zhiyan Dong, Lihua Zhang, Shunli Wang, and Dingkang Yang. "Robust Adversarial Reinforcement Learning with Dissipation Inequation Constraint." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 5 (2022): 5431–39. http://dx.doi.org/10.1609/aaai.v36i5.20481.
Pełny tekst źródłaChen, Ya-Ling, Yan-Rou Cai, and Ming-Yang Cheng. "Vision-Based Robotic Object Grasping—A Deep Reinforcement Learning Approach." Machines 11, no. 2 (2023): 275. http://dx.doi.org/10.3390/machines11020275.
Pełny tekst źródłaHurtado-Gómez, Julián, Juan David Romo, Ricardo Salazar-Cabrera, Álvaro Pachón de la Cruz, and Juan Manuel Madrid Molina. "Traffic Signal Control System Based on Intelligent Transportation System and Reinforcement Learning." Electronics 10, no. 19 (2021): 2363. http://dx.doi.org/10.3390/electronics10192363.
Pełny tekst źródłaZiwei Pan, Ziwei Pan. "Design of Interactive Cultural Brand Marketing System based on Cloud Service Platform." 網際網路技術學刊 23, no. 2 (2022): 321–34. http://dx.doi.org/10.53106/160792642022032302012.
Pełny tekst źródłaKim, Byeongjun, Gunam Kwon, Chaneun Park, and Nam Kyu Kwon. "The Task Decomposition and Dedicated Reward-System-Based Reinforcement Learning Algorithm for Pick-and-Place." Biomimetics 8, no. 2 (2023): 240. http://dx.doi.org/10.3390/biomimetics8020240.
Pełny tekst źródłaRitonga, Mahyudin, and Fitria Sartika. "Muyûl al-Talâmidh fî Tadrîs al-Qirâ’ah." Jurnal Alfazuna : Jurnal Pembelajaran Bahasa Arab dan Kebahasaaraban 6, no. 1 (2021): 36–52. http://dx.doi.org/10.15642/alfazuna.v6i1.1715.
Pełny tekst źródłaLikas, Aristidis. "A Reinforcement Learning Approach to Online Clustering." Neural Computation 11, no. 8 (1999): 1915–32. http://dx.doi.org/10.1162/089976699300016025.
Pełny tekst źródłaYing-Ming Shi, Ying-Ming Shi, and Zhiyuan Zhang Ying-Ming Shi. "Research on Path Planning Strategy of Rescue Robot Based on Reinforcement Learning." 電腦學刊 33, no. 3 (2022): 187–94. http://dx.doi.org/10.53106/199115992022063303015.
Pełny tekst źródłaSantos, John Paul E., Joseph A. Villarama, Joseph P. Adsuara, Jordan F. Gundran, Aileen G. De Guzman, and Evelyn M. Ben. "Students’ Time Management, Academic Procrastination, and Performance during Online Science and Mathematics Classes." International Journal of Learning, Teaching and Educational Research 21, no. 12 (2022): 142–61. http://dx.doi.org/10.26803/ijlter.21.12.8.
Pełny tekst źródłaMinghai Yuan, Minghai Yuan, Chenxi Zhang Minghai Yuan, Kaiwen Zhou Chenxi Zhang, and Fengque Pei Kaiwen Zhou. "Real-time Allocation of Shared Parking Spaces Based on Deep Reinforcement Learning." 網際網路技術學刊 24, no. 1 (2023): 035–43. http://dx.doi.org/10.53106/160792642023012401004.
Pełny tekst źródłaWest, Joseph, Frederic Maire, Cameron Browne, and Simon Denman. "Improved reinforcement learning with curriculum." Expert Systems with Applications 158 (November 2020): 113515. http://dx.doi.org/10.1016/j.eswa.2020.113515.
Pełny tekst źródłaZini, Floriano, Fabio Le Piane, and Mauro Gaspari. "Adaptive Cognitive Training with Reinforcement Learning." ACM Transactions on Interactive Intelligent Systems 12, no. 1 (2022): 1–29. http://dx.doi.org/10.1145/3476777.
Pełny tekst źródłaChen, Junyan, Yong Wang, Jiangtao Ou, et al. "ALBRL: Automatic Load-Balancing Architecture Based on Reinforcement Learning in Software-Defined Networking." Wireless Communications and Mobile Computing 2022 (May 2, 2022): 1–17. http://dx.doi.org/10.1155/2022/3866143.
Pełny tekst źródłaTessler, Chen, Yuval Shpigelman, Gal Dalal, et al. "Reinforcement Learning for Datacenter Congestion Control." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12615–21. http://dx.doi.org/10.1609/aaai.v36i11.21535.
Pełny tekst źródłaTessler, Chen, Yuval Shpigelman, Gal Dalal, et al. "Reinforcement Learning for Datacenter Congestion Control." ACM SIGMETRICS Performance Evaluation Review 49, no. 2 (2022): 43–46. http://dx.doi.org/10.1145/3512798.3512815.
Pełny tekst źródłaLittman, Michael L. "Reinforcement learning improves behaviour from evaluative feedback." Nature 521, no. 7553 (2015): 445–51. http://dx.doi.org/10.1038/nature14540.
Pełny tekst źródłaYen-Wen Chen, Yen-Wen Chen, and Ji-Zheng You Yen-Wen Chen. "Effective Radio Resource Allocation for IoT Random Access by Using Reinforcement Learning." 網際網路技術學刊 23, no. 5 (2022): 1069–75. http://dx.doi.org/10.53106/160792642022092305015.
Pełny tekst źródłaZhao, Yongqi, Zhangdong Wei, and Jing Wen. "Prediction of Soil Heavy Metal Content Based on Deep Reinforcement Learning." Scientific Programming 2022 (April 15, 2022): 1–10. http://dx.doi.org/10.1155/2022/1476565.
Pełny tekst źródłaMcLaverty, Brian, Robert S. Parker, and Gilles Clermont. "Reinforcement learning algorithm to improve intermittent hemodialysis." Journal of Critical Care 74 (April 2023): 154205. http://dx.doi.org/10.1016/j.jcrc.2022.154205.
Pełny tekst źródłaLin, Jin. "Path planning based on reinforcement learning." Applied and Computational Engineering 5, no. 1 (2023): 853–58. http://dx.doi.org/10.54254/2755-2721/5/20230728.
Pełny tekst źródłaHuang, Xu, Hong Zhang, and Xiaomeng Zhai. "A Novel Reinforcement Learning Approach for Spark Configuration Parameter Optimization." Sensors 22, no. 15 (2022): 5930. http://dx.doi.org/10.3390/s22155930.
Pełny tekst źródłaIssa, A., and A. Aldair. "Learning the Quadruped Robot by Reinforcement Learning (RL)." Iraqi Journal for Electrical and Electronic Engineering 18, no. 2 (2022): 117–26. http://dx.doi.org/10.37917/ijeee.18.2.15.
Pełny tekst źródłaZhao, Yuxin, Yanlong Liu, and Xiong Deng. "Optimization of a Regional Marine Environment Mobile Observation Network Based on Deep Reinforcement Learning." Journal of Marine Science and Engineering 11, no. 1 (2023): 208. http://dx.doi.org/10.3390/jmse11010208.
Pełny tekst źródłaLecarpentier, Erwan, David Abel, Kavosh Asadi, Yuu Jinnai, Emmanuel Rachelson, and Michael L. Littman. "Lipschitz Lifelong Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 8270–78. http://dx.doi.org/10.1609/aaai.v35i9.17006.
Pełny tekst źródłaLiu, Yu, and Ning Zhou. "Jumping Action Recognition for Figure Skating Video in IoT Using Improved Deep Reinforcement Learning." Information Technology and Control 52, no. 2 (2023): 309–21. http://dx.doi.org/10.5755/j01.itc.52.2.33300.
Pełny tekst źródłaGonzález-Garduño, Ana V. "Reinforcement Learning for Improved Low Resource Dialogue Generation." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 9884–85. http://dx.doi.org/10.1609/aaai.v33i01.33019884.
Pełny tekst źródłaKuremoto, Takashi, Tetsuya Tsurusaki, Kunikazu Kobayashi, Shingo Mabu, and Masanao Obayashi. "An Improved Reinforcement Learning System Using Affective Factors." Robotics 2, no. 3 (2013): 149–64. http://dx.doi.org/10.3390/robotics2030149.
Pełny tekst źródłaLuo, Teng. "Improved reinforcement learning algorithm for mobile robot path planning." ITM Web of Conferences 47 (2022): 02030. http://dx.doi.org/10.1051/itmconf/20224702030.
Pełny tekst źródłaWu, Yukun, Xuncheng Wu, Siyuan Qiu, and Wenbin Xiang. "A Method for High-Value Driving Demonstration Data Generation Based on One-Dimensional Deep Convolutional Generative Adversarial Networks." Electronics 11, no. 21 (2022): 3553. http://dx.doi.org/10.3390/electronics11213553.
Pełny tekst źródłaMaree, Charl, and Christian W. Omlin. "Can Interpretable Reinforcement Learning Manage Prosperity Your Way?" AI 3, no. 2 (2022): 526–37. http://dx.doi.org/10.3390/ai3020030.
Pełny tekst źródłaFang, Qiang, Wenzhuo Zhang, and Xitong Wang. "Visual Navigation Using Inverse Reinforcement Learning and an Extreme Learning Machine." Electronics 10, no. 16 (2021): 1997. http://dx.doi.org/10.3390/electronics10161997.
Pełny tekst źródłaOmidshafiei, Shayegan, Dong-Ki Kim, Miao Liu, et al. "Learning to Teach in Cooperative Multiagent Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 6128–36. http://dx.doi.org/10.1609/aaai.v33i01.33016128.
Pełny tekst źródłaMa, Guoqing, Zhifu Wang, Xianfeng Yuan, and Fengyu Zhou. "Improving Model-Based Deep Reinforcement Learning with Learning Degree Networks and Its Application in Robot Control." Journal of Robotics 2022 (March 4, 2022): 1–14. http://dx.doi.org/10.1155/2022/7169594.
Pełny tekst źródłaFRIEDRICH, JOHANNES, ROBERT URBANCZIK, and WALTER SENN. "CODE-SPECIFIC LEARNING RULES IMPROVE ACTION SELECTION BY POPULATIONS OF SPIKING NEURONS." International Journal of Neural Systems 24, no. 05 (2014): 1450002. http://dx.doi.org/10.1142/s0129065714500026.
Pełny tekst źródłaRen, Jing, Xishi Huang, and Raymond N. Huang. "Efficient Deep Reinforcement Learning for Optimal Path Planning." Electronics 11, no. 21 (2022): 3628. http://dx.doi.org/10.3390/electronics11213628.
Pełny tekst źródłaBai, Fengshuo, Hongming Zhang, Tianyang Tao, Zhiheng Wu, Yanna Wang, and Bo Xu. "PiCor: Multi-Task Deep Reinforcement Learning with Policy Correction." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (2023): 6728–36. http://dx.doi.org/10.1609/aaai.v37i6.25825.
Pełny tekst źródłaZajdel, Roman. "Epoch-incremental reinforcement learning algorithms." International Journal of Applied Mathematics and Computer Science 23, no. 3 (2013): 623–35. http://dx.doi.org/10.2478/amcs-2013-0047.
Pełny tekst źródłaYu, Ning, Lin Nan, and Tao Ku. "Multipolicy Robot-Following Model Based on Reinforcement Learning." Scientific Programming 2021 (November 8, 2021): 1–8. http://dx.doi.org/10.1155/2021/5692105.
Pełny tekst źródłaZhou, Minghui. "Multithreshold Microbial Image Segmentation Using Improved Deep Reinforcement Learning." Mathematical Problems in Engineering 2022 (August 23, 2022): 1–11. http://dx.doi.org/10.1155/2022/5096298.
Pełny tekst źródłaKaddour, N., P. Del Moral, and E. Ikonen. "Improved version of the McMurtry-Fu reinforcement learning scheme." International Journal of Systems Science 34, no. 1 (2003): 37–47. http://dx.doi.org/10.1080/0020772031000115560.
Pełny tekst źródłaShi, Zhen, Keyin Wang, and Jianhui Zhang. "Improved reinforcement learning path planning algorithm integrating prior knowledge." PLOS ONE 18, no. 5 (2023): e0284942. http://dx.doi.org/10.1371/journal.pone.0284942.
Pełny tekst źródłaBéres, András, and Bálint Gyires-Tóth. "Enhancing Visual Domain Randomization with Real Images for Sim-to-Real Transfer." Infocommunications journal 15, no. 1 (2023): 15–25. http://dx.doi.org/10.36244/icj.2023.1.3.
Pełny tekst źródłaSzepesvári, Csaba, and Michael L. Littman. "A Unified Analysis of Value-Function-Based Reinforcement-Learning Algorithms." Neural Computation 11, no. 8 (1999): 2017–60. http://dx.doi.org/10.1162/089976699300016070.
Pełny tekst źródłaHuang, Yong, Xin Xu, Yong Li, Xinglong Zhang, Yao Liu, and Xiaochuan Zhang. "Vehicle-Following Control Based on Deep Reinforcement Learning." Applied Sciences 12, no. 20 (2022): 10648. http://dx.doi.org/10.3390/app122010648.
Pełny tekst źródłaJiang, Huawei, Tao Guo, Zhen Yang, and Like Zhao. "Deep reinforcement learning algorithm for solving material emergency dispatching problem." Mathematical Biosciences and Engineering 19, no. 11 (2022): 10864–81. http://dx.doi.org/10.3934/mbe.2022508.
Pełny tekst źródłaKoga, Marcelo L., Valdinei Freire, and Anna H. R. Costa. "Stochastic Abstract Policies: Generalizing Knowledge to Improve Reinforcement Learning." IEEE Transactions on Cybernetics 45, no. 1 (2015): 77–88. http://dx.doi.org/10.1109/tcyb.2014.2319733.
Pełny tekst źródłaLi, Xiali, Zhengyu Lv, Licheng Wu, Yue Zhao, and Xiaona Xu. "Hybrid Online and Offline Reinforcement Learning for Tibetan Jiu Chess." Complexity 2020 (May 11, 2020): 1–11. http://dx.doi.org/10.1155/2020/4708075.
Pełny tekst źródłaTantu, Year Rezeki Patricia, and Kirey Eleison Oloi Marina. "Teachers' efforts to improve discipline of elementary school students using positive reinforcement methods in online learning." JURNAL PENDIDIKAN DASAR NUSANTARA 8, no. 2 (2023): 288–98. http://dx.doi.org/10.29407/jpdn.v8i2.19118.
Pełny tekst źródłaHuang, Wenya, Youjin Liu, and Xizheng Zhang. "Hybrid Particle Swarm Optimization Algorithm Based on the Theory of Reinforcement Learning in Psychology." Systems 11, no. 2 (2023): 83. http://dx.doi.org/10.3390/systems11020083.
Pełny tekst źródła