Artykuły w czasopismach na temat „Improper reinforcement learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Improper reinforcement learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Dass, Shuvalaxmi, i Akbar Siami Namin. "Reinforcement Learning for Generating Secure Configurations". Electronics 10, nr 19 (30.09.2021): 2392. http://dx.doi.org/10.3390/electronics10192392.
Pełny tekst źródłaZhai, Peng, Jie Luo, Zhiyan Dong, Lihua Zhang, Shunli Wang i Dingkang Yang. "Robust Adversarial Reinforcement Learning with Dissipation Inequation Constraint". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 5 (28.06.2022): 5431–39. http://dx.doi.org/10.1609/aaai.v36i5.20481.
Pełny tekst źródłaChen, Ya-Ling, Yan-Rou Cai i Ming-Yang Cheng. "Vision-Based Robotic Object Grasping—A Deep Reinforcement Learning Approach". Machines 11, nr 2 (12.02.2023): 275. http://dx.doi.org/10.3390/machines11020275.
Pełny tekst źródłaHurtado-Gómez, Julián, Juan David Romo, Ricardo Salazar-Cabrera, Álvaro Pachón de la Cruz i Juan Manuel Madrid Molina. "Traffic Signal Control System Based on Intelligent Transportation System and Reinforcement Learning". Electronics 10, nr 19 (28.09.2021): 2363. http://dx.doi.org/10.3390/electronics10192363.
Pełny tekst źródłaZiwei Pan, Ziwei Pan. "Design of Interactive Cultural Brand Marketing System based on Cloud Service Platform". 網際網路技術學刊 23, nr 2 (marzec 2022): 321–34. http://dx.doi.org/10.53106/160792642022032302012.
Pełny tekst źródłaKim, Byeongjun, Gunam Kwon, Chaneun Park i Nam Kyu Kwon. "The Task Decomposition and Dedicated Reward-System-Based Reinforcement Learning Algorithm for Pick-and-Place". Biomimetics 8, nr 2 (6.06.2023): 240. http://dx.doi.org/10.3390/biomimetics8020240.
Pełny tekst źródłaRitonga, Mahyudin, i Fitria Sartika. "Muyûl al-Talâmidh fî Tadrîs al-Qirâ’ah". Jurnal Alfazuna : Jurnal Pembelajaran Bahasa Arab dan Kebahasaaraban 6, nr 1 (21.12.2021): 36–52. http://dx.doi.org/10.15642/alfazuna.v6i1.1715.
Pełny tekst źródłaLikas, Aristidis. "A Reinforcement Learning Approach to Online Clustering". Neural Computation 11, nr 8 (1.11.1999): 1915–32. http://dx.doi.org/10.1162/089976699300016025.
Pełny tekst źródłaYing-Ming Shi, Ying-Ming Shi, i Zhiyuan Zhang Ying-Ming Shi. "Research on Path Planning Strategy of Rescue Robot Based on Reinforcement Learning". 電腦學刊 33, nr 3 (czerwiec 2022): 187–94. http://dx.doi.org/10.53106/199115992022063303015.
Pełny tekst źródłaSantos, John Paul E., Joseph A. Villarama, Joseph P. Adsuara, Jordan F. Gundran, Aileen G. De Guzman i Evelyn M. Ben. "Students’ Time Management, Academic Procrastination, and Performance during Online Science and Mathematics Classes". International Journal of Learning, Teaching and Educational Research 21, nr 12 (30.12.2022): 142–61. http://dx.doi.org/10.26803/ijlter.21.12.8.
Pełny tekst źródłaMinghai Yuan, Minghai Yuan, Chenxi Zhang Minghai Yuan, Kaiwen Zhou Chenxi Zhang i Fengque Pei Kaiwen Zhou. "Real-time Allocation of Shared Parking Spaces Based on Deep Reinforcement Learning". 網際網路技術學刊 24, nr 1 (styczeń 2023): 035–43. http://dx.doi.org/10.53106/160792642023012401004.
Pełny tekst źródłaWest, Joseph, Frederic Maire, Cameron Browne i Simon Denman. "Improved reinforcement learning with curriculum". Expert Systems with Applications 158 (listopad 2020): 113515. http://dx.doi.org/10.1016/j.eswa.2020.113515.
Pełny tekst źródłaZini, Floriano, Fabio Le Piane i Mauro Gaspari. "Adaptive Cognitive Training with Reinforcement Learning". ACM Transactions on Interactive Intelligent Systems 12, nr 1 (31.03.2022): 1–29. http://dx.doi.org/10.1145/3476777.
Pełny tekst źródłaChen, Junyan, Yong Wang, Jiangtao Ou, Chengyuan Fan, Xiaoye Lu, Cenhuishan Liao, Xuefeng Huang i Hongmei Zhang. "ALBRL: Automatic Load-Balancing Architecture Based on Reinforcement Learning in Software-Defined Networking". Wireless Communications and Mobile Computing 2022 (2.05.2022): 1–17. http://dx.doi.org/10.1155/2022/3866143.
Pełny tekst źródłaTessler, Chen, Yuval Shpigelman, Gal Dalal, Amit Mandelbaum, Doron Haritan Kazakov, Benjamin Fuhrer, Gal Chechik i Shie Mannor. "Reinforcement Learning for Datacenter Congestion Control". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 11 (28.06.2022): 12615–21. http://dx.doi.org/10.1609/aaai.v36i11.21535.
Pełny tekst źródłaTessler, Chen, Yuval Shpigelman, Gal Dalal, Amit Mandelbaum, Doron Haritan Kazakov, Benjamin Fuhrer, Gal Chechik i Shie Mannor. "Reinforcement Learning for Datacenter Congestion Control". ACM SIGMETRICS Performance Evaluation Review 49, nr 2 (17.01.2022): 43–46. http://dx.doi.org/10.1145/3512798.3512815.
Pełny tekst źródłaLittman, Michael L. "Reinforcement learning improves behaviour from evaluative feedback". Nature 521, nr 7553 (maj 2015): 445–51. http://dx.doi.org/10.1038/nature14540.
Pełny tekst źródłaYen-Wen Chen, Yen-Wen Chen, i Ji-Zheng You Yen-Wen Chen. "Effective Radio Resource Allocation for IoT Random Access by Using Reinforcement Learning". 網際網路技術學刊 23, nr 5 (wrzesień 2022): 1069–75. http://dx.doi.org/10.53106/160792642022092305015.
Pełny tekst źródłaZhao, Yongqi, Zhangdong Wei i Jing Wen. "Prediction of Soil Heavy Metal Content Based on Deep Reinforcement Learning". Scientific Programming 2022 (15.04.2022): 1–10. http://dx.doi.org/10.1155/2022/1476565.
Pełny tekst źródłaMcLaverty, Brian, Robert S. Parker i Gilles Clermont. "Reinforcement learning algorithm to improve intermittent hemodialysis". Journal of Critical Care 74 (kwiecień 2023): 154205. http://dx.doi.org/10.1016/j.jcrc.2022.154205.
Pełny tekst źródłaLin, Jin. "Path planning based on reinforcement learning". Applied and Computational Engineering 5, nr 1 (14.06.2023): 853–58. http://dx.doi.org/10.54254/2755-2721/5/20230728.
Pełny tekst źródłaHuang, Xu, Hong Zhang i Xiaomeng Zhai. "A Novel Reinforcement Learning Approach for Spark Configuration Parameter Optimization". Sensors 22, nr 15 (8.08.2022): 5930. http://dx.doi.org/10.3390/s22155930.
Pełny tekst źródłaIssa, A., i A. Aldair. "Learning the Quadruped Robot by Reinforcement Learning (RL)". Iraqi Journal for Electrical and Electronic Engineering 18, nr 2 (6.10.2022): 117–26. http://dx.doi.org/10.37917/ijeee.18.2.15.
Pełny tekst źródłaZhao, Yuxin, Yanlong Liu i Xiong Deng. "Optimization of a Regional Marine Environment Mobile Observation Network Based on Deep Reinforcement Learning". Journal of Marine Science and Engineering 11, nr 1 (12.01.2023): 208. http://dx.doi.org/10.3390/jmse11010208.
Pełny tekst źródłaLecarpentier, Erwan, David Abel, Kavosh Asadi, Yuu Jinnai, Emmanuel Rachelson i Michael L. Littman. "Lipschitz Lifelong Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 9 (18.05.2021): 8270–78. http://dx.doi.org/10.1609/aaai.v35i9.17006.
Pełny tekst źródłaLiu, Yu, i Ning Zhou. "Jumping Action Recognition for Figure Skating Video in IoT Using Improved Deep Reinforcement Learning". Information Technology and Control 52, nr 2 (15.07.2023): 309–21. http://dx.doi.org/10.5755/j01.itc.52.2.33300.
Pełny tekst źródłaGonzález-Garduño, Ana V. "Reinforcement Learning for Improved Low Resource Dialogue Generation". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 9884–85. http://dx.doi.org/10.1609/aaai.v33i01.33019884.
Pełny tekst źródłaKuremoto, Takashi, Tetsuya Tsurusaki, Kunikazu Kobayashi, Shingo Mabu i Masanao Obayashi. "An Improved Reinforcement Learning System Using Affective Factors". Robotics 2, nr 3 (10.07.2013): 149–64. http://dx.doi.org/10.3390/robotics2030149.
Pełny tekst źródłaLuo, Teng. "Improved reinforcement learning algorithm for mobile robot path planning". ITM Web of Conferences 47 (2022): 02030. http://dx.doi.org/10.1051/itmconf/20224702030.
Pełny tekst źródłaWu, Yukun, Xuncheng Wu, Siyuan Qiu i Wenbin Xiang. "A Method for High-Value Driving Demonstration Data Generation Based on One-Dimensional Deep Convolutional Generative Adversarial Networks". Electronics 11, nr 21 (31.10.2022): 3553. http://dx.doi.org/10.3390/electronics11213553.
Pełny tekst źródłaMaree, Charl, i Christian W. Omlin. "Can Interpretable Reinforcement Learning Manage Prosperity Your Way?" AI 3, nr 2 (13.06.2022): 526–37. http://dx.doi.org/10.3390/ai3020030.
Pełny tekst źródłaFang, Qiang, Wenzhuo Zhang i Xitong Wang. "Visual Navigation Using Inverse Reinforcement Learning and an Extreme Learning Machine". Electronics 10, nr 16 (18.08.2021): 1997. http://dx.doi.org/10.3390/electronics10161997.
Pełny tekst źródłaOmidshafiei, Shayegan, Dong-Ki Kim, Miao Liu, Gerald Tesauro, Matthew Riemer, Christopher Amato, Murray Campbell i Jonathan P. How. "Learning to Teach in Cooperative Multiagent Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 6128–36. http://dx.doi.org/10.1609/aaai.v33i01.33016128.
Pełny tekst źródłaMa, Guoqing, Zhifu Wang, Xianfeng Yuan i Fengyu Zhou. "Improving Model-Based Deep Reinforcement Learning with Learning Degree Networks and Its Application in Robot Control". Journal of Robotics 2022 (4.03.2022): 1–14. http://dx.doi.org/10.1155/2022/7169594.
Pełny tekst źródłaFRIEDRICH, JOHANNES, ROBERT URBANCZIK i WALTER SENN. "CODE-SPECIFIC LEARNING RULES IMPROVE ACTION SELECTION BY POPULATIONS OF SPIKING NEURONS". International Journal of Neural Systems 24, nr 05 (30.05.2014): 1450002. http://dx.doi.org/10.1142/s0129065714500026.
Pełny tekst źródłaRen, Jing, Xishi Huang i Raymond N. Huang. "Efficient Deep Reinforcement Learning for Optimal Path Planning". Electronics 11, nr 21 (7.11.2022): 3628. http://dx.doi.org/10.3390/electronics11213628.
Pełny tekst źródłaBai, Fengshuo, Hongming Zhang, Tianyang Tao, Zhiheng Wu, Yanna Wang i Bo Xu. "PiCor: Multi-Task Deep Reinforcement Learning with Policy Correction". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 6 (26.06.2023): 6728–36. http://dx.doi.org/10.1609/aaai.v37i6.25825.
Pełny tekst źródłaZajdel, Roman. "Epoch-incremental reinforcement learning algorithms". International Journal of Applied Mathematics and Computer Science 23, nr 3 (1.09.2013): 623–35. http://dx.doi.org/10.2478/amcs-2013-0047.
Pełny tekst źródłaYu, Ning, Lin Nan i Tao Ku. "Multipolicy Robot-Following Model Based on Reinforcement Learning". Scientific Programming 2021 (8.11.2021): 1–8. http://dx.doi.org/10.1155/2021/5692105.
Pełny tekst źródłaZhou, Minghui. "Multithreshold Microbial Image Segmentation Using Improved Deep Reinforcement Learning". Mathematical Problems in Engineering 2022 (23.08.2022): 1–11. http://dx.doi.org/10.1155/2022/5096298.
Pełny tekst źródłaKaddour, N., P. Del Moral i E. Ikonen. "Improved version of the McMurtry-Fu reinforcement learning scheme". International Journal of Systems Science 34, nr 1 (styczeń 2003): 37–47. http://dx.doi.org/10.1080/0020772031000115560.
Pełny tekst źródłaShi, Zhen, Keyin Wang i Jianhui Zhang. "Improved reinforcement learning path planning algorithm integrating prior knowledge". PLOS ONE 18, nr 5 (4.05.2023): e0284942. http://dx.doi.org/10.1371/journal.pone.0284942.
Pełny tekst źródłaBéres, András, i Bálint Gyires-Tóth. "Enhancing Visual Domain Randomization with Real Images for Sim-to-Real Transfer". Infocommunications journal 15, nr 1 (2023): 15–25. http://dx.doi.org/10.36244/icj.2023.1.3.
Pełny tekst źródłaSzepesvári, Csaba, i Michael L. Littman. "A Unified Analysis of Value-Function-Based Reinforcement-Learning Algorithms". Neural Computation 11, nr 8 (1.11.1999): 2017–60. http://dx.doi.org/10.1162/089976699300016070.
Pełny tekst źródłaHuang, Yong, Xin Xu, Yong Li, Xinglong Zhang, Yao Liu i Xiaochuan Zhang. "Vehicle-Following Control Based on Deep Reinforcement Learning". Applied Sciences 12, nr 20 (21.10.2022): 10648. http://dx.doi.org/10.3390/app122010648.
Pełny tekst źródłaJiang, Huawei, Tao Guo, Zhen Yang i Like Zhao. "Deep reinforcement learning algorithm for solving material emergency dispatching problem". Mathematical Biosciences and Engineering 19, nr 11 (2022): 10864–81. http://dx.doi.org/10.3934/mbe.2022508.
Pełny tekst źródłaKoga, Marcelo L., Valdinei Freire i Anna H. R. Costa. "Stochastic Abstract Policies: Generalizing Knowledge to Improve Reinforcement Learning". IEEE Transactions on Cybernetics 45, nr 1 (styczeń 2015): 77–88. http://dx.doi.org/10.1109/tcyb.2014.2319733.
Pełny tekst źródłaLi, Xiali, Zhengyu Lv, Licheng Wu, Yue Zhao i Xiaona Xu. "Hybrid Online and Offline Reinforcement Learning for Tibetan Jiu Chess". Complexity 2020 (11.05.2020): 1–11. http://dx.doi.org/10.1155/2020/4708075.
Pełny tekst źródłaTantu, Year Rezeki Patricia, i Kirey Eleison Oloi Marina. "Teachers' efforts to improve discipline of elementary school students using positive reinforcement methods in online learning". JURNAL PENDIDIKAN DASAR NUSANTARA 8, nr 2 (31.01.2023): 288–98. http://dx.doi.org/10.29407/jpdn.v8i2.19118.
Pełny tekst źródłaHuang, Wenya, Youjin Liu i Xizheng Zhang. "Hybrid Particle Swarm Optimization Algorithm Based on the Theory of Reinforcement Learning in Psychology". Systems 11, nr 2 (6.02.2023): 83. http://dx.doi.org/10.3390/systems11020083.
Pełny tekst źródła