Gotowa bibliografia na temat „Improper reinforcement learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Improper reinforcement learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Improper reinforcement learning"
Dass, Shuvalaxmi, i Akbar Siami Namin. "Reinforcement Learning for Generating Secure Configurations". Electronics 10, nr 19 (30.09.2021): 2392. http://dx.doi.org/10.3390/electronics10192392.
Pełny tekst źródłaZhai, Peng, Jie Luo, Zhiyan Dong, Lihua Zhang, Shunli Wang i Dingkang Yang. "Robust Adversarial Reinforcement Learning with Dissipation Inequation Constraint". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 5 (28.06.2022): 5431–39. http://dx.doi.org/10.1609/aaai.v36i5.20481.
Pełny tekst źródłaChen, Ya-Ling, Yan-Rou Cai i Ming-Yang Cheng. "Vision-Based Robotic Object Grasping—A Deep Reinforcement Learning Approach". Machines 11, nr 2 (12.02.2023): 275. http://dx.doi.org/10.3390/machines11020275.
Pełny tekst źródłaHurtado-Gómez, Julián, Juan David Romo, Ricardo Salazar-Cabrera, Álvaro Pachón de la Cruz i Juan Manuel Madrid Molina. "Traffic Signal Control System Based on Intelligent Transportation System and Reinforcement Learning". Electronics 10, nr 19 (28.09.2021): 2363. http://dx.doi.org/10.3390/electronics10192363.
Pełny tekst źródłaZiwei Pan, Ziwei Pan. "Design of Interactive Cultural Brand Marketing System based on Cloud Service Platform". 網際網路技術學刊 23, nr 2 (marzec 2022): 321–34. http://dx.doi.org/10.53106/160792642022032302012.
Pełny tekst źródłaKim, Byeongjun, Gunam Kwon, Chaneun Park i Nam Kyu Kwon. "The Task Decomposition and Dedicated Reward-System-Based Reinforcement Learning Algorithm for Pick-and-Place". Biomimetics 8, nr 2 (6.06.2023): 240. http://dx.doi.org/10.3390/biomimetics8020240.
Pełny tekst źródłaRitonga, Mahyudin, i Fitria Sartika. "Muyûl al-Talâmidh fî Tadrîs al-Qirâ’ah". Jurnal Alfazuna : Jurnal Pembelajaran Bahasa Arab dan Kebahasaaraban 6, nr 1 (21.12.2021): 36–52. http://dx.doi.org/10.15642/alfazuna.v6i1.1715.
Pełny tekst źródłaLikas, Aristidis. "A Reinforcement Learning Approach to Online Clustering". Neural Computation 11, nr 8 (1.11.1999): 1915–32. http://dx.doi.org/10.1162/089976699300016025.
Pełny tekst źródłaYing-Ming Shi, Ying-Ming Shi, i Zhiyuan Zhang Ying-Ming Shi. "Research on Path Planning Strategy of Rescue Robot Based on Reinforcement Learning". 電腦學刊 33, nr 3 (czerwiec 2022): 187–94. http://dx.doi.org/10.53106/199115992022063303015.
Pełny tekst źródłaSantos, John Paul E., Joseph A. Villarama, Joseph P. Adsuara, Jordan F. Gundran, Aileen G. De Guzman i Evelyn M. Ben. "Students’ Time Management, Academic Procrastination, and Performance during Online Science and Mathematics Classes". International Journal of Learning, Teaching and Educational Research 21, nr 12 (30.12.2022): 142–61. http://dx.doi.org/10.26803/ijlter.21.12.8.
Pełny tekst źródłaRozprawy doktorskie na temat "Improper reinforcement learning"
BRUCHON, NIKY. "Feasibility Investigation on Several Reinforcement Learning Techniques to Improve the Performance of the FERMI Free-Electron Laser". Doctoral thesis, Università degli Studi di Trieste, 2021. http://hdl.handle.net/11368/2982117.
Pełny tekst źródłaKreutmayr, Fabian, i Markus Imlauer. "Application of machine learning to improve to performance of a pressure-controlled system". Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71076.
Pełny tekst źródłaZaki, Mohammadi. "Algorithms for Online Learning in Structured Environments". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/6080.
Pełny tekst źródłaChi, Lu-cheng, i 紀律呈. "An Improved Deep Reinforcement Learning with Sparse Rewards". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/eq94pr.
Pełny tekst źródła國立中山大學
電機工程學系研究所
107
In reinforcement learning, how an agent explores in an environment with sparse rewards is a long-standing problem. An improved deep reinforcement learning described in this thesis encourages an agent to explore unvisited environmental states in an environment with sparse rewards. In deep reinforcement learning, an agent directly uses an image observation from environment as an input to the neural network. However, some neglected observations from environment, such as depth, might provide valuable information. An improved deep reinforcement learning described in this thesis is based on the Actor-Critic algorithm and uses the convolutional neural network as a hetero-encoder between an image input and other observations from environment. In the environment with sparse rewards, we use these neglected observations from environment as a target output of supervised learning and provide an agent denser training signals through supervised learning to bootstrap reinforcement learning. In addition, we use the loss from supervised learning as the feedback for an agent’s exploration behavior in an environment, called the label reward, to encourage an agent to explore unvisited environmental states. Finally, we construct multiple neural networks by Asynchronous Advantage Actor-Critic algorithm and learn the policy with multiple agents. An improved deep reinforcement learning described in this thesis is compared with other deep reinforcement learning in an environment with sparse rewards and achieves better performance.
Hsin-Jung, Huang, i 黃信榮. "Applying Reinforcement Learning to Improve NPC game Character Intelligence". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/38802886766630465543.
Pełny tekst źródła大葉大學
資訊管理學系碩士班
95
Today, video games are the most popular entertainment for young people. With rapidly developed computer technology, the quality and complexity of AI (Artificial In-telligence) used in computer games are gradually increasing. Today, AI has become a vital element of computer games. Intelligent NPC (Non-Player Character) which can act as playmates is becoming the essential element for most video games. How to enhance the intelligence of game characters has become an important research topic. This study proposes a cooperative reinforcement learning structure of NPC agents that share the common global states and the overall reward mechanism. Agents trained through our reinforcement learning mechanism will be able to develop an action strat-egy to complete their missions in the virtual game environment. Our empirical result has shown some promising result. Even the NPC agents are tested in different game level environments, all agents that share with the same goal will learn to perform ap-propriate actions and achieve the common goal reasonably.
Chen, Chia-Hao, i 陳家豪. "Improve Top ASR Hypothesis with Re-correction by Reinforcement Learning". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/zde779.
Pełny tekst źródła國立中央大學
資訊工程學系
107
In real situations, utterances are transcribed by ASR(Automatic Speech Recognition) systems, which usually propose multiple candidate transcriptions(hypothesis). Most of the time, the first hypothesis is the best and most commonly used. But the first hypothesis of ASR in a noisy environment often misses some words that are important to the LU(Language Understanding), and these words can be found among second hypothesis. But on the whole, the first ASR hypothesis is significantly better than the second ASR hypothesis. It is not the best choice if we abandon the first ASR hypothesis because it lacks some words. If we can refer to the 2th ASR hypothesis to modify the missing or redundant words of the first ASR hypothesis, we can get utterances closer to the user's true intentions. In this paper we propose a method to automatically correct the 1th ASR hypothesis by the reinforcement learning model. It can correct the first hypothesis word by word by other hypothesis. Our method raises the bleu score of 1th ASR hypothesis from 70.18 to 76.74.
Hsu, Yung-Chi, i 徐永吉. "Improved Safe Reinforcement Learning Based Self Adaptive Evolutionary Algorithms for Neuro-Fuzzy Controller Design". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/43659775487135397105.
Pełny tekst źródła國立交通大學
電機與控制工程系所
97
In this dissertation, improved safe reinforcement learning based self adaptive evolutionary algorithms (ISRL-SAEAs) are proposed for TSK-type neuro-fuzzy controller design. The ISRL-SAEAs can improve not only the reinforcement signal designed but also traditional evolutionary algorithms. There are two parts in the proposed ISRL-SAEAs. In the first part, the SAEAs are proposed to solve the following problems: 1) all the fuzzy rules are encoded into one chromosome; 2) the number of fuzzy rules has to be assigned in advance; and 3) the population cannot evaluate each fuzzy rule locally. The second part of the ISRL-SAEAs is the ISRL. In the ISRL, two different strategies (judgment and evaluation) are used to design the reinforcement signal. Moreover the Lyapunov stability is considered in ISRL. To demonstrate the performance of the proposed method, the inverted pendulum control system and tandem pendulum control system are presented. As shown in simulation, the ISRL-SAEAs perform better than other reinforcement evolution methods.
Lin, Ching-Pin, i 林敬斌. "Using Reinforcement Learning to Improve a Simple Intra-day Trading System of Taiwan Stock Index Future". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/34369847383488676186.
Pełny tekst źródła國立臺灣大學
資訊工程學研究所
97
This thesis applied Q-learning algorithm of reinforcement learning to improve a simple intra-day trading system of Taiwan stock index future. We simulate the performance of the original strategy by back-testing it with historical data. Furthermore, we use historical information as training data for reinforcement learning and examine the improved achievement. The training data are the tick data of every trading day from 2003 to 2007 and the testing period is from January 2008 to May 2009. The original strategy is a trend-following channel breakout system. We take the result of reinforcement learning to determine whether to do trend following or countertrend trading every time the system plans to make position.
Książki na temat "Improper reinforcement learning"
Urtāns, Ēvalds. Function shaping in deep learning. RTU Press, 2021. http://dx.doi.org/10.7250/9789934226854.
Pełny tekst źródłaRohsenow, Damaris J., i Megan M. Pinkston-Camp. Cognitive-Behavioral Approaches. Redaktor Kenneth J. Sher. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199381708.013.010.
Pełny tekst źródłaCarmo, Mafalda. Education Applications & Developments VI. inScience Press, 2021. http://dx.doi.org/10.36315/2021eadvi.
Pełny tekst źródłaCzęści książek na temat "Improper reinforcement learning"
Wang, Kunfu, Ruolin Xing, Wei Feng i Baiqiao Huang. "A Method of UAV Formation Transformation Based on Reinforcement Learning Multi-agent". W Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 187–95. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_20.
Pełny tekst źródłaSingh, Moirangthem Tiken, Aninda Chakrabarty, Bhargab Sarma i Sourav Dutta. "An Improved On-Policy Reinforcement Learning Algorithm". W Advances in Intelligent Systems and Computing, 321–30. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7394-1_30.
Pełny tekst źródłaMa, Ping, i Hong-Li Zhang. "Improved Artificial Bee Colony Algorithm Based on Reinforcement Learning". W Intelligent Computing Theories and Application, 721–32. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42294-7_64.
Pełny tekst źródłaDai, Zixiang, i Mingyan Jiang. "An Improved Lion Swarm Algorithm Based on Reinforcement Learning". W Advances in Intelligent Automation and Soft Computing, 76–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81007-8_10.
Pełny tekst źródłaKim, Jongrae. "Improved Robustness Analysis of Reinforcement Learning Embedded Control Systems". W Robot Intelligence Technology and Applications 6, 104–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97672-9_10.
Pełny tekst źródłaReid, Mark, i Malcolm Ryan. "Using ILP to Improve Planning in Hierarchical Reinforcement Learning". W Inductive Logic Programming, 174–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-44960-4_11.
Pełny tekst źródłaCallegari, Daniel Antonio, i Flávio Moreira de Oliveira. "Applying Reinforcement Learning to Improve MCOE, an Intelligent Learning Environment for Ecology". W Lecture Notes in Computer Science, 284–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/10720076_26.
Pełny tekst źródłaFountain, Jake, Josiah Walker, David Budden, Alexandre Mendes i Stephan K. Chalup. "Motivated Reinforcement Learning for Improved Head Actuation of Humanoid Robots". W RoboCup 2013: Robot World Cup XVII, 268–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44468-9_24.
Pełny tekst źródłaLiu, Jun, Yi Zhou, Yimin Qiu i Zhongfeng Li. "An Improved Multi-objective Optimization Algorithm Based on Reinforcement Learning". W Lecture Notes in Computer Science, 501–13. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09677-8_42.
Pełny tekst źródłaZhong, Chen, Chutong Ye, Chenyu Wu i Ao Zhan. "An Improved Dynamic Spectrum Access Algorithm Based on Reinforcement Learning". W Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 13–25. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30237-4_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Improper reinforcement learning"
Narvekar, Sanmit. "Curriculum Learning in Reinforcement Learning". W Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/757.
Pełny tekst źródłaWang, Zhaodong, i Matthew E. Taylor. "Improving Reinforcement Learning with Confidence-Based Demonstrations". W Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/422.
Pełny tekst źródłaVuong, Tung-Long, Do-Van Nguyen, Tai-Long Nguyen, Cong-Minh Bui, Hai-Dang Kieu, Viet-Cuong Ta, Quoc-Long Tran i Thanh-Ha Le. "Sharing Experience in Multitask Reinforcement Learning". W Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/505.
Pełny tekst źródłaGabel, Thomas, Christian Lutz i Martin Riedmiller. "Improved neural fitted Q iteration applied to a novel computer gaming and learning benchmark". W 2011 Ieee Symposium On Adaptive Dynamic Programming And Reinforcement Learning. IEEE, 2011. http://dx.doi.org/10.1109/adprl.2011.5967361.
Pełny tekst źródłaWu, Yuechen, Wei Zhang i Ke Song. "Master-Slave Curriculum Design for Reinforcement Learning". W Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/211.
Pełny tekst źródłaQin, Yunxiao, Weiguo Zhang, Jingping Shi i Jinglong Liu. "Improve PID controller through reinforcement learning". W 2018 IEEE CSAA Guidance, Navigation and Control Conference (GNCC). IEEE, 2018. http://dx.doi.org/10.1109/gncc42960.2018.9019095.
Pełny tekst źródłaDESHPANDE, PRATHAMESH P., KAREN J. DEMILLE, AOWABIN RAHMAN, SUSANTA GHOSH, ASHLEY D. SPEAR i GREGORY M. ODEGARD. "DESIGNING AN IMPROVED INTERFACE IN GRAPHENE/POLYMER COMPOSITES THROUGH MACHINE LEARNING". W Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36458.
Pełny tekst źródłaEaglin, Gerald, i Joshua Vaughan. "Leveraging Conventional Control to Improve Performance of Systems Using Reinforcement Learning". W ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3307.
Pełny tekst źródłaSong, Haolin, Mingxiao Feng, Wengang Zhou i Houqiang Li. "MA2CL:Masked Attentive Contrastive Learning for Multi-Agent Reinforcement Learning". W Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/470.
Pełny tekst źródłaZhu, Hanhua. "Generalized Representation Learning Methods for Deep Reinforcement Learning". W Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/748.
Pełny tekst źródłaRaporty organizacyjne na temat "Improper reinforcement learning"
Miles, Gaines E., Yael Edan, F. Tom Turpin, Avshalom Grinstein, Thomas N. Jordan, Amots Hetzroni, Stephen C. Weller, Marvin M. Schreiber i Okan K. Ersoy. Expert Sensor for Site Specification Application of Agricultural Chemicals. United States Department of Agriculture, sierpień 1995. http://dx.doi.org/10.32747/1995.7570567.bard.
Pełny tekst źródłaA Decision-Making Method for Connected Autonomous Driving Based on Reinforcement Learning. SAE International, grudzień 2020. http://dx.doi.org/10.4271/2020-01-5154.
Pełny tekst źródła