Artykuły w czasopismach na temat „Implantable microelectrode arrays”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Implantable microelectrode arrays”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wei, Wen Jing, Yi Lin Song, Wen Tao Shi, Chun Xiu Liu, Ting Jun Jiang i Xin Xia Cai. "A Novel Microelectrode Array Probe Integrated with Electrophysiology Reference Electrode for Neural Recording". Key Engineering Materials 562-565 (lipiec 2013): 67–73. http://dx.doi.org/10.4028/www.scientific.net/kem.562-565.67.
Pełny tekst źródłaHetke, J. F., J. L. Lund, K. Najafi, K. D. Wise i D. J. Anderson. "Silicon ribbon cables for chronically implantable microelectrode arrays". IEEE Transactions on Biomedical Engineering 41, nr 4 (kwiecień 1994): 314–21. http://dx.doi.org/10.1109/10.284959.
Pełny tekst źródłaZarifi, Mohammad Hossein, Javad Frounchi, Mohammad Ali Tinati i Jack W. Judy. "PLATINUM-BASED CONE MICROELECTRODES FOR IMPLANTABLE NEURAL RECORDING APPLICATIONS". Biomedical Engineering: Applications, Basis and Communications 22, nr 03 (czerwiec 2010): 249–54. http://dx.doi.org/10.4015/s1016237210001992.
Pełny tekst źródłaJohnson, Matthew D., Robert K. Franklin, Matthew D. Gibson, Richard B. Brown i Daryl R. Kipke. "Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings". Journal of Neuroscience Methods 174, nr 1 (wrzesień 2008): 62–70. http://dx.doi.org/10.1016/j.jneumeth.2008.06.036.
Pełny tekst źródłaGreen, Rylie A., Juan S. Ordonez, Martin Schuettler, Laura A. Poole-Warren, Nigel H. Lovell i Gregg J. Suaning. "Cytotoxicity of implantable microelectrode arrays produced by laser micromachining". Biomaterials 31, nr 5 (luty 2010): 886–93. http://dx.doi.org/10.1016/j.biomaterials.2009.09.099.
Pełny tekst źródłaSeymour, John P., Nick B. Langhals, David J. Anderson i Daryl R. Kipke. "Novel multi-sided, microelectrode arrays for implantable neural applications". Biomedical Microdevices 13, nr 3 (8.02.2011): 441–51. http://dx.doi.org/10.1007/s10544-011-9512-z.
Pełny tekst źródłaGhane-Motlagh, Bahareh, i Mohamad Sawan. "High-Density Implantable Microelectrode Arrays for Brain-Machine Interface Applications". Advances in Science and Technology 96 (październik 2014): 95–101. http://dx.doi.org/10.4028/www.scientific.net/ast.96.95.
Pełny tekst źródłaJi, J., i K. D. Wise. "An implantable CMOS circuit interface for multiplexed microelectrode recording arrays". IEEE Journal of Solid-State Circuits 27, nr 3 (marzec 1992): 433–43. http://dx.doi.org/10.1109/4.121568.
Pełny tekst źródłade Haro, C., R. Mas, G. Abadal, J. Muñoz, F. Perez-Murano i C. Domı́nguez. "Electrochemical platinum coatings for improving performance of implantable microelectrode arrays". Biomaterials 23, nr 23 (grudzień 2002): 4515–21. http://dx.doi.org/10.1016/s0142-9612(02)00195-3.
Pełny tekst źródłaBlack, Bryan J., Aswini Kanneganti, Alexandra Joshi-Imre, Rashed Rihani, Bitan Chakraborty, Justin Abbott, Joseph J. Pancrazio i Stuart F. Cogan. "Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex". Journal of Neurophysiology 120, nr 4 (1.10.2018): 2083–90. http://dx.doi.org/10.1152/jn.00181.2018.
Pełny tekst źródłaDu, Jiangang, Ingmar H. Riedel-Kruse, Janna C. Nawroth, Michael L. Roukes, Gilles Laurent i Sotiris C. Masmanidis. "High-Resolution Three-Dimensional Extracellular Recording of Neuronal Activity With Microfabricated Electrode Arrays". Journal of Neurophysiology 101, nr 3 (marzec 2009): 1671–78. http://dx.doi.org/10.1152/jn.90992.2008.
Pełny tekst źródłaSchuettler, M., S. Stiess, B. V. King i G. J. Suaning. "Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil". Journal of Neural Engineering 2, nr 1 (23.02.2005): S121—S128. http://dx.doi.org/10.1088/1741-2560/2/1/013.
Pełny tekst źródłaNegi, S., R. Bhandari, L. Rieth i F. Solzbacher. "In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays". Biomedical Materials 5, nr 1 (luty 2010): 015007. http://dx.doi.org/10.1088/1748-6041/5/1/015007.
Pełny tekst źródłaZeng, Qi, Saisai Zhao, Hangao Yang, Yi Zhang i Tianzhun Wu. "Micro/Nano Technologies for High-Density Retinal Implant". Micromachines 10, nr 6 (22.06.2019): 419. http://dx.doi.org/10.3390/mi10060419.
Pełny tekst źródłaJang, Jae-Won, Yoo Na Kang, Hee Won Seo, Boil Kim, Han Kyoung Choe, Sang Hyun Park, Maan-Gee Lee i Sohee Kim. "Long-term in-vivo recording performance of flexible penetrating microelectrode arrays". Journal of Neural Engineering 18, nr 6 (19.11.2021): 066018. http://dx.doi.org/10.1088/1741-2552/ac3656.
Pełny tekst źródłaChakraborty, Bitan. "Electrochemical Properties of Sputtered Ruthenium Oxide Neural Stimulation and Recording Electrodes". Electrochem 4, nr 3 (24.07.2023): 350–64. http://dx.doi.org/10.3390/electrochem4030023.
Pełny tekst źródłaRui, Yuefeng, Jingquan Liu, Yajun Wang i Chunsheng Yang. "Parylene-based implantable Pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces". Microsystem Technologies 17, nr 3 (marzec 2011): 437–42. http://dx.doi.org/10.1007/s00542-011-1279-x.
Pełny tekst źródłaXiao, Guihua, Yilin Song, Yu Zhang, Yu Xing, Shengwei Xu, Mixia Wang, Junbo Wang, Deyong Chen, Jian Chen i Xinxia Cai. "Dopamine and Striatal Neuron Firing Respond to Frequency-Dependent DBS Detected by Microelectrode Arrays in the Rat Model of Parkinson’s Disease". Biosensors 10, nr 10 (28.09.2020): 136. http://dx.doi.org/10.3390/bios10100136.
Pełny tekst źródłaSaggese, Gerardo, i Antonio Giuseppe Maria Strollo. "A Low Power 1024-Channels Spike Detector Using Latch-Based RAM for Real-Time Brain Silicon Interfaces". Electronics 10, nr 24 (9.12.2021): 3068. http://dx.doi.org/10.3390/electronics10243068.
Pełny tekst źródłaAmini, Shahram. "O021 / #592 HIERARCHICAL SURFACE RESTRUCTURING: A NOVEL TECHNOLOGY FOR NEXT GENERATION IMPLANTABLE NEURAL INTERFACING ELECTRODES AND MICROELECTRODE ARRAYS". Neuromodulation: Technology at the Neural Interface 25, nr 7 (październik 2022): S50—S51. http://dx.doi.org/10.1016/j.neurom.2022.08.058.
Pełny tekst źródłaYi, Wenwen, Chaoyang Chen, Zhaoying Feng, Yong Xu, Chengpeng Zhou, Nirul Masurkar, John Cavanaugh i Mark Ming-Cheng Cheng. "A flexible and implantable microelectrode arrays using high-temperature grown vertical carbon nanotubes and a biocompatible polymer substrate". Nanotechnology 26, nr 12 (6.03.2015): 125301. http://dx.doi.org/10.1088/0957-4484/26/12/125301.
Pełny tekst źródłaJeakle, Eleanor N., Justin R. Abbott, Joshua O. Usoro, Yupeng Wu, Pegah Haghighi, Rahul Radhakrishna, Brandon S. Sturgill i in. "Chronic Stability of Local Field Potentials Using Amorphous Silicon Carbide Microelectrode Arrays Implanted in the Rat Motor Cortex". Micromachines 14, nr 3 (19.03.2023): 680. http://dx.doi.org/10.3390/mi14030680.
Pełny tekst źródłaLu, Botao, Penghui Fan, Yiding Wang, Yuchuan Dai, Jingyu Xie, Gucheng Yang, Fan Mo i in. "Neuronal Electrophysiological Activities Detection of Defense Behaviors Using an Implantable Microelectrode Array in the Dorsal Periaqueductal Gray". Biosensors 12, nr 4 (25.03.2022): 193. http://dx.doi.org/10.3390/bios12040193.
Pełny tekst źródłaCaldwell, Ryan, Himadri Mandal, Rohit Sharma, Florian Solzbacher, Prashant Tathireddy i Loren Rieth. "Analysis of Al2O3—parylene C bilayer coatings and impact of microelectrode topography on long term stability of implantable neural arrays". Journal of Neural Engineering 14, nr 4 (31.05.2017): 046011. http://dx.doi.org/10.1088/1741-2552/aa69d3.
Pełny tekst źródłaWu, Bingchen, Elisa Castagnola i Xinyan Tracy Cui. "Zwitterionic Polymer Coated and Aptamer Functionalized Flexible Micro-Electrode Arrays for In Vivo Cocaine Sensing and Electrophysiology". Micromachines 14, nr 2 (27.01.2023): 323. http://dx.doi.org/10.3390/mi14020323.
Pełny tekst źródłaNarayana, V. Lakshman, i A. Peda Gopi. "Enterotoxigenic Escherichia Coli Detection Using the Design of a Biosensor". Journal of New Materials for Electrochemical Systems 23, nr 3 (30.09.2020): 164–66. http://dx.doi.org/10.14447/jnmes.v23i3.a02.
Pełny tekst źródłaGuan, S., J. Wang, X. Gu, Y. Zhao, R. Hou, H. Fan, L. Zou i in. "Elastocapillary self-assembled neurotassels for stable neural activity recordings". Science Advances 5, nr 3 (marzec 2019): eaav2842. http://dx.doi.org/10.1126/sciadv.aav2842.
Pełny tekst źródłaFerrea, E., L. Suriya-Arunroj, D. Hoehl, U. Thomas i A. Gail. "Implantable computer-controlled adaptive multielectrode positioning system". Journal of Neurophysiology 119, nr 4 (1.04.2018): 1471–84. http://dx.doi.org/10.1152/jn.00504.2017.
Pełny tekst źródłaSui, Xiao Hong, Fei Tan i Qiu Shi Ren. "Electrical Characteristics of a Stimulating Microelectrode-Electrolyte Interface". Key Engineering Materials 483 (czerwiec 2011): 690–93. http://dx.doi.org/10.4028/www.scientific.net/kem.483.690.
Pełny tekst źródłaLi, Szu-Ying, Hsin-Yi Tseng, Bo-Wei Chen, Yu-Chun Lo, Huai-Hsuan Shao, Yen-Ting Wu, Ssu-Ju Li i in. "Proof of Concept for Sustainable Manufacturing of Neural Electrode Array for In Vivo Recording". Biosensors 13, nr 2 (16.02.2023): 280. http://dx.doi.org/10.3390/bios13020280.
Pełny tekst źródłaBeygi, Mohammad, John T. Bentley, Christopher L. Frewin, Cary A. Kuliasha, Arash Takshi, Evans K. Bernardin, Francesco La Via i Stephen E. Saddow. "Fabrication of a Monolithic Implantable Neural Interface from Cubic Silicon Carbide". Micromachines 10, nr 7 (29.06.2019): 430. http://dx.doi.org/10.3390/mi10070430.
Pełny tekst źródłaSwadlow, Harvey A., Yulia Bereshpolova, Tatiana Bezdudnaya, Monica Cano i Carl R. Stoelzel. "A Multi-Channel, Implantable Microdrive System for Use With Sharp, Ultra-Fine “Reitboeck” Microelectrodes". Journal of Neurophysiology 93, nr 5 (maj 2005): 2959–65. http://dx.doi.org/10.1152/jn.01141.2004.
Pełny tekst źródłaHuang, Ting, Zhonghai Wang, Lina Wei, Mark Kindy, Yufeng Zheng, Tingfei Xi i Bruce Z. Gao. "Microelectrode Array-evaluation of Neurotoxic Effects of Magnesium as an Implantable Biomaterial". Journal of Materials Science & Technology 32, nr 1 (styczeń 2016): 89–96. http://dx.doi.org/10.1016/j.jmst.2015.08.009.
Pełny tekst źródłaKim, Yong-Ho, Chungkeun Lee, Kang-Min Ahn, Myoungho Lee i Yong-Jun Kim. "Robust and real-time monitoring of nerve regeneration using implantable flexible microelectrode array". Biosensors and Bioelectronics 24, nr 7 (marzec 2009): 1883–87. http://dx.doi.org/10.1016/j.bios.2008.09.034.
Pełny tekst źródłaYoon, E., B. Koo, J. Wong, S. Elyahoodayan, J. D. Weiland, C. D. Lee, A. Petrossians i E. Meng. "An implantable microelectrode array for chronic in vivo epiretinal stimulation of the rat retina". Journal of Micromechanics and Microengineering 30, nr 12 (17.10.2020): 124001. http://dx.doi.org/10.1088/1361-6439/abbb7d.
Pełny tekst źródłaTrada, Hiren V., Venkat Vendra, Joseph P. Tinney, Fangping Yuan, Douglas J. Jackson, Kevin M. Walsh i Bradley B. Keller. "Implantable thin-film porous microelectrode array (P-MEA) for electrical stimulation of engineered cardiac tissues". BioChip Journal 9, nr 2 (18.03.2015): 85–94. http://dx.doi.org/10.1007/s13206-015-9201-8.
Pełny tekst źródłaGuo, Rui, i Jing Liu. "Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions". Journal of Micromechanics and Microengineering 27, nr 10 (13.09.2017): 104002. http://dx.doi.org/10.1088/1361-6439/aa891c.
Pełny tekst źródłaShan, Jin, Yilin Song, Yiding Wang, Penghui Fan, Botao Lu, Jinping Luo, Wei Xu i in. "Highly Activated Neuronal Firings Monitored by Implantable Microelectrode Array in the Paraventricular Thalamus of Insomnia Rats". Sensors 23, nr 10 (10.05.2023): 4629. http://dx.doi.org/10.3390/s23104629.
Pełny tekst źródłaNazari, Hossein, Paulo Falabella, Lan Yue, James Weiland i Mark S. Humayun. "Retinal Prostheses". Journal of VitreoRetinal Diseases 1, nr 3 (20.04.2017): 204–13. http://dx.doi.org/10.1177/2474126417702067.
Pełny tekst źródłaBroche, Lionel M., Karla D. Bustamante i Michael Pycraft Hughes. "An Algorithm for Tracking the Position and Velocity of Multiple Neuronal Signals Using Implantable Microelectrodes In Vivo". Micromachines 12, nr 11 (31.10.2021): 1346. http://dx.doi.org/10.3390/mi12111346.
Pełny tekst źródłaMarland, Jamie, Mark Gray, David Argyle, Ian Underwood, Alan Murray i Mark Potter. "Post-Operative Monitoring of Intestinal Tissue Oxygenation Using an Implantable Microfabricated Oxygen Sensor". Micromachines 12, nr 7 (10.07.2021): 810. http://dx.doi.org/10.3390/mi12070810.
Pełny tekst źródłaAtta, Raghied Mohammed. "Increasing contact area of microelectrodes in implantable microchannel array system for peripheral nerve regenerative using metal deposited nanospheres". International Journal of Nano and Biomaterials 2, nr 1/2/3/4/5 (2009): 313. http://dx.doi.org/10.1504/ijnbm.2009.027727.
Pełny tekst źródłaZhang, Song, Yilin Song, Mixia Wang, Zhiming Zhang, Xinyi Fan, Xianteng Song, Ping Zhuang, Feng Yue, Piu Chan i Xinxia Cai. "A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain". Biosensors and Bioelectronics 85 (listopad 2016): 53–61. http://dx.doi.org/10.1016/j.bios.2016.04.087.
Pełny tekst źródłaWei, Wenjing, Yilin Song, Xinyi Fan, Song Zhang, Li Wang, Shengwei Xu, Mixia Wang i Xinxia Cai. "Simultaneous recording of brain extracellular glucose, spike and local field potential in real time using an implantable microelectrode array with nano-materials". Nanotechnology 27, nr 11 (12.02.2016): 114001. http://dx.doi.org/10.1088/0957-4484/27/11/114001.
Pełny tekst źródłaStutzki, Henrike, Florian Helmhold, Max Eickenscheidt i Günther Zeck. "Subretinal electrical stimulation reveals intact network activity in the blind mouse retina". Journal of Neurophysiology 116, nr 4 (1.10.2016): 1684–93. http://dx.doi.org/10.1152/jn.01095.2015.
Pełny tekst źródłaKim, Kangil, Seung-Ju Han, Chang-Hee Kim i Sangmin Lee. "Implantable nanostructured microelectrode array with biphasic current stimulator for retinal prostheses". Technology and Health Care, 23.02.2023, 1–15. http://dx.doi.org/10.3233/thc-235001.
Pełny tekst źródłaCorbett, Scott, Joe Ketterl i Tim Johnson. "Polymer-Based Microelectrode Arrays". MRS Proceedings 926 (2006). http://dx.doi.org/10.1557/proc-0926-cc06-02.
Pełny tekst źródłaLowe, Alexa, Safaa Hussain, Grace Xia, Ahsan Habib i Ali Yanik. "Brain Computer Interfaces: Wireless Recording of Brain Signals with Electro-Plasmonic Nanoantenna". Journal of Student Research 11, nr 1 (28.02.2022). http://dx.doi.org/10.47611/jsrhs.v11i1.2421.
Pełny tekst źródłaHejazi, Maryam, Wei Tong, Michael R. Ibbotson, Steven Prawer i David J. Garrett. "Advances in Carbon-Based Microfiber Electrodes for Neural Interfacing". Frontiers in Neuroscience 15 (12.04.2021). http://dx.doi.org/10.3389/fnins.2021.658703.
Pełny tekst źródłaSun, Yimin, Xulin Dong, Hu He, Yan Zhang, Kai Chi, Yun Xu, Muhammad Asif i in. "2D carbon network arranged into high-order 3D nanotube arrays on a flexible microelectrode: integration into electrochemical microbiosensor devices for cancer detection". NPG Asia Materials 15, nr 1 (31.03.2023). http://dx.doi.org/10.1038/s41427-022-00458-5.
Pełny tekst źródła