Gotowa bibliografia na temat „Implantable microelectrode arrays”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Implantable microelectrode arrays”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Implantable microelectrode arrays"
Wei, Wen Jing, Yi Lin Song, Wen Tao Shi, Chun Xiu Liu, Ting Jun Jiang i Xin Xia Cai. "A Novel Microelectrode Array Probe Integrated with Electrophysiology Reference Electrode for Neural Recording". Key Engineering Materials 562-565 (lipiec 2013): 67–73. http://dx.doi.org/10.4028/www.scientific.net/kem.562-565.67.
Pełny tekst źródłaHetke, J. F., J. L. Lund, K. Najafi, K. D. Wise i D. J. Anderson. "Silicon ribbon cables for chronically implantable microelectrode arrays". IEEE Transactions on Biomedical Engineering 41, nr 4 (kwiecień 1994): 314–21. http://dx.doi.org/10.1109/10.284959.
Pełny tekst źródłaZarifi, Mohammad Hossein, Javad Frounchi, Mohammad Ali Tinati i Jack W. Judy. "PLATINUM-BASED CONE MICROELECTRODES FOR IMPLANTABLE NEURAL RECORDING APPLICATIONS". Biomedical Engineering: Applications, Basis and Communications 22, nr 03 (czerwiec 2010): 249–54. http://dx.doi.org/10.4015/s1016237210001992.
Pełny tekst źródłaJohnson, Matthew D., Robert K. Franklin, Matthew D. Gibson, Richard B. Brown i Daryl R. Kipke. "Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings". Journal of Neuroscience Methods 174, nr 1 (wrzesień 2008): 62–70. http://dx.doi.org/10.1016/j.jneumeth.2008.06.036.
Pełny tekst źródłaGreen, Rylie A., Juan S. Ordonez, Martin Schuettler, Laura A. Poole-Warren, Nigel H. Lovell i Gregg J. Suaning. "Cytotoxicity of implantable microelectrode arrays produced by laser micromachining". Biomaterials 31, nr 5 (luty 2010): 886–93. http://dx.doi.org/10.1016/j.biomaterials.2009.09.099.
Pełny tekst źródłaSeymour, John P., Nick B. Langhals, David J. Anderson i Daryl R. Kipke. "Novel multi-sided, microelectrode arrays for implantable neural applications". Biomedical Microdevices 13, nr 3 (8.02.2011): 441–51. http://dx.doi.org/10.1007/s10544-011-9512-z.
Pełny tekst źródłaGhane-Motlagh, Bahareh, i Mohamad Sawan. "High-Density Implantable Microelectrode Arrays for Brain-Machine Interface Applications". Advances in Science and Technology 96 (październik 2014): 95–101. http://dx.doi.org/10.4028/www.scientific.net/ast.96.95.
Pełny tekst źródłaJi, J., i K. D. Wise. "An implantable CMOS circuit interface for multiplexed microelectrode recording arrays". IEEE Journal of Solid-State Circuits 27, nr 3 (marzec 1992): 433–43. http://dx.doi.org/10.1109/4.121568.
Pełny tekst źródłade Haro, C., R. Mas, G. Abadal, J. Muñoz, F. Perez-Murano i C. Domı́nguez. "Electrochemical platinum coatings for improving performance of implantable microelectrode arrays". Biomaterials 23, nr 23 (grudzień 2002): 4515–21. http://dx.doi.org/10.1016/s0142-9612(02)00195-3.
Pełny tekst źródłaBlack, Bryan J., Aswini Kanneganti, Alexandra Joshi-Imre, Rashed Rihani, Bitan Chakraborty, Justin Abbott, Joseph J. Pancrazio i Stuart F. Cogan. "Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex". Journal of Neurophysiology 120, nr 4 (1.10.2018): 2083–90. http://dx.doi.org/10.1152/jn.00181.2018.
Pełny tekst źródłaRozprawy doktorskie na temat "Implantable microelectrode arrays"
Maghribi, M. "Microfabrication of an Implantable silicone Microelectrode array for an epiretinal prosthesis". Washington, D.C : Oak Ridge, Tenn. : United States. Dept. of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2003. http://www.osti.gov/servlets/purl/15005780-5uYpbJ/native/.
Pełny tekst źródłaPublished through the Information Bridge: DOE Scientific and Technical Information. "UCRL-LR-153347" Maghribi, M. 06/10/2003. Report is also available in paper and microfiche from NTIS.
Maghribi, Mariam Nader. "Microfabrication of an implantable silicone microelectrode array for an epiretinal prosthesis /". For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2003. http://uclibs.org/PID/11984.
Pełny tekst źródłaGabran, Salam. "Intra-Cortical Microelectrode Arrays for Neuro-Interfacing". Thesis, 2012. http://hdl.handle.net/10012/7094.
Pełny tekst źródłaYu, Zheng-lin, i 余政霖. "Fabrication and Layout Improvement of Implantable Microelectrode Array Probes for Biosensing Applications". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/59303984446491851010.
Pełny tekst źródła國立臺灣科技大學
化學工程系
102
In this research, the semiconductor manufacturing technology we used to fabricate implantable microelectrode array (MEA) probes. The manufacturing process that we used included thermal oxidation, photolithography, thin film deposition and etching. We optimized each processing step in order to make miniaturized and low-cost microelectrode array probes with good spatial resolution, high production rate, and high yield. The process can be divided into three parts. The first part is the formation of metal layer on the probes that defined electrode sites, channels and bonding pads. The photolithography technology and metal deposition technology by electron beam evaporator were used to transfer the metal pattern on the substrate. The second part is the passivation process of probe surface. The dielectric layer was deposited on the probe to prevent short circuit. Therefore, after the formation of metal layer, plasma enhanced chemical vapor deposition (PECVD) was used to deposit dielectric layer. Then the electrode sites and the bonding pads defined by the second photolithography process were etched to expose their metal surfaces. The third part is the definition of probe outline. The third photolithography process was used to define the pattern of probe outline and then, the etching process was used to etch the outline to the bottom of the substrate in order to make the probes releasable from the wafer. In the whole process, photolithography is the most difficult and complicated step; however, we can modify the pattern of the probe layout to improve the process conditions. In this research, we also focused on the layout design of MEA probes and hoped to improve the process efficiency and the yield of MEA probes. The cost of this manufacturing process is a major consideration; therefore, we compared different processing method and chose better processing parameters for our process in order to establish an optimized MEA manufacturing process for the production of probes with high production rate and yield.
Części książek na temat "Implantable microelectrode arrays"
Cheung, Karen C. "Thin-Film Microelectrode Arrays for Biomedical Applications". W Implantable Neural Prostheses 2, 157–90. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-98120-8_6.
Pełny tekst źródłaKandagor, Vincent, Carlos J. Cela, Charlene A. Sanders, Elias Greenbaum, Gianluca Lazzi, David D. Zhou, Richard Castro, Sanjay Gaikwad i Jim Little. "In Situ Characterization of Stimulating Microelectrode Arrays: Study of an Idealized Structure Based on Argus II Retinal implants". W Implantable Neural Prostheses 2, 139–56. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-98120-8_5.
Pełny tekst źródłaJun, Sang Beom. "Implantable Brain Interface: High-Density Microelectrode Array for Neural Recording". W KAIST Research Series, 75–105. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9981-2_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Implantable microelectrode arrays"
Park, Sei Jin, Anna Ivanovskaya i Allison Yorita. "Synthesis and Fabrication of Single Walled Carbon Nanotube Microelectrode Arrays on Flexible Probes for Neurotransmitter Detection". W ASME 2022 17th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/msec2022-85273.
Pełny tekst źródłaJi, J., i K. D. Wise. "An implantable CMOS analog signal processor for multiplexed microelectrode recording arrays". W IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop. IEEE, 1990. http://dx.doi.org/10.1109/solsen.1990.109831.
Pełny tekst źródłaXiao, Guihua, Yilin Song, Yu Zhang, Shengwei Xu, Fei Gao, Jingyu Xie, Mixia Wang, Huabing Yin, Tianhong Cui i Xinxia Cai. "Implantable Microelectrode Arrays for Epileptiform Electrical Signals Detection in the Awake Epileptic Mice *". W 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2019. http://dx.doi.org/10.1109/nano46743.2019.8993886.
Pełny tekst źródłaLu, Zeying, Shengwei Xu, Hao Wang, Juntao Liu, Yun Wang, Jingyu Xie, Yilin Song i in. "Implantable Microelectrode Arrays for Electrophysiological Activity Detection in Cortex of Sleep Deprived Rats *". W 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2019. http://dx.doi.org/10.1109/nano46743.2019.8993920.
Pełny tekst źródłaWang, Mixia, Yilin Song, Song Zhang, Shengwei Xu, Guihua Xiao, Ziyue Li, Fei Gao i in. "Abnormal Spontaneous Neuronal Discharge and Local Field Potential both in Cortex and Striatum of a Non- human Primate of Parkinson’s Disease using Implantable Microelectrode Arrays". W 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018. http://dx.doi.org/10.1109/embc.2018.8512999.
Pełny tekst źródłaAlahi, Md Eshrat E., Zhou Tian, Sara Khademi, Hao Wang i Tianzhun Wu. "Slippery coated Implantable flexible microelectrode array (fMEA) for High-Performance Neural Interface". W 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2021. http://dx.doi.org/10.1109/nems51815.2021.9451468.
Pełny tekst źródłaTooker, A., K. G. Shah, V. Tolosa, H. Sheth, S. Felix, T. Delima i S. Pannu. "CHRONICALLY IMPLANTABLE, 121-CHANNEL, POLYMER MICROELECTRODE ARRAY WITH HERMETICALLY-SEALED WIRELESS INTERFACE". W 2012 Solid-State, Actuators, and Microsystems Workshop. San Diego: Transducer Research Foundation, 2012. http://dx.doi.org/10.31438/trf.hh2012.41.
Pełny tekst źródłaPatrick, E., V. Sankar, W. Rowe, J. C. Sanchez i T. Nishida. "An implantable integrated low-power amplifier-microelectrode array for Brain-Machine Interfaces". W 2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010). IEEE, 2010. http://dx.doi.org/10.1109/iembs.2010.5626419.
Pełny tekst źródłaPatrick, Erin, Viswanath Sankar, William Rowe, Sheng-Feng Yen, Justin C. Sanchez i Toshikazu Nishida. "Flexible polymer substrate and tungsten microelectrode array for an implantable neural recording system". W 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2008. http://dx.doi.org/10.1109/iembs.2008.4649874.
Pełny tekst źródłaZhang, Song, Yilin Song, Jun Jia, Guihua Xiao, Lili Yang, Min Sun, Mixia Wang i Xinxia Cai. "An implantable microelectrode array for dopamine and electrophysiological recordings in response to L-dopa therapy for Parkinson's disease". W 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016. http://dx.doi.org/10.1109/embc.2016.7591098.
Pełny tekst źródłaRaporty organizacyjne na temat "Implantable microelectrode arrays"
Maghribi, Mariam Nader. Microfabrication of an Implantable silicone Microelectrode array for an epiretinal prosthesis. Office of Scientific and Technical Information (OSTI), czerwiec 2003. http://dx.doi.org/10.2172/15005780.
Pełny tekst źródła