Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Immunotoxicity.

Artykuły w czasopismach na temat „Immunotoxicity”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Immunotoxicity”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Nakamura, Kazuichi. "Immunotoxicity study". Folia Pharmacologica Japonica 131, nr 3 (2008): 215–19. http://dx.doi.org/10.1254/fpj.131.215.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Collinge, Mark. "Developmental immunotoxicity". Drug Metabolism and Pharmacokinetics 34, nr 1 (styczeń 2019): S4. http://dx.doi.org/10.1016/j.dmpk.2018.09.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Cunningham, Morven, Marco Iafolla, Yada Kanjanapan, Orlando Cerocchi, Marcus Butler, Lillian L. Siu, Philippe L. Bedard i in. "Evaluation of liver enzyme elevations and hepatotoxicity in patients treated with checkpoint inhibitor immunotherapy". PLOS ONE 16, nr 6 (11.06.2021): e0253070. http://dx.doi.org/10.1371/journal.pone.0253070.

Pełny tekst źródła
Streszczenie:
Background and aims Immune checkpoint inhibitors (ICI) are increasingly used in cancer therapy. Elevated liver enzymes frequently occur in patients treated with ICI but evaluation is poorly described. We sought to better understand causes of liver enzyme elevation, investigation and management. Methods Patients treated with anti-PD-1, PDL-1 or CTLA-4 therapy in Phase I/II clinical trials between August 2012 and December 2018 were included. Clinical records of patients with significant liver enzyme elevations were retrospectively reviewed. Results Of 470 ICI-treated patients, liver enzyme elevation occurred in 102 (21.6%), attributed to disease progression (56; 54.9%), other drugs/toxins (7; 6.9%), other causes (22; 21.6%) and ICI immunotoxicity (17; 16.7%; 3.6% of total cohort). Immunotoxicity was associated with higher peak ALT than other causes of enzyme elevation (N = 17; M = 217, 95% CI 145–324 for immunotoxicity, N = 103; M = 74, 95% CI 59–92 for other causes; ratio of means 0.34, 95% CI 0.19–0.60, p = <0.001) and higher ALT:AST ratio (M = 1.27, 95% CI 0.78–2.06 for immunotoxicity, M = 0.69, 95% CI 0.59–0.80 for other causes, ratio of means 0.54, 95% CI 0.36–0.82, p = 0.004). Immunotoxicity was more often seen in patients with prior CPI exposure (41.2% of immunotoxicity vs 15.9% of patients without, p = 0.01), anti-CTLA-4 –containing ICI treatments (29.4% of immunotoxicity vs 6.8% of patients without, p = <0.001) and other organ immunotoxicity (76.5% of immunotoxicity vs 19.2% of patients without, p = <0.001). Cause for enzyme elevation was established in most patients after non-invasive investigation. Liver biopsy was reserved for four patients with atypical treatment response. Conclusions Liver enzyme elevation is common in patients receiving ICI, but often has a cause other than immunotoxicity. A biochemical signature with higher ALT and ALT/AST ratio, a history of prior ICI exposure and other organ immunotoxicities may help to identify patients at a higher likelihood of immunotoxicity. Liver biopsy can be safely deferred in most patients. We propose an approach to diagnostic evaluation in patients with liver enzyme elevations following ICI exposure.
Style APA, Harvard, Vancouver, ISO itp.
4

Wang, Xinge, Na Li, Mei Ma, Yingnan Han i Kaifeng Rao. "Immunotoxicity in Vitro Assays for Environmental Pollutants under Paradigm Shift in Toxicity Tests". International Journal of Environmental Research and Public Health 20, nr 1 (24.12.2022): 273. http://dx.doi.org/10.3390/ijerph20010273.

Pełny tekst źródła
Streszczenie:
With the outbreak of COVID-19, increasingly more attention has been paid to the effects of environmental factors on the immune system of organisms, because environmental pollutants may act in synergy with viruses by affecting the immunity of organisms. The immune system is a developing defense system formed by all metazoans in the course of struggling with various internal and external factors, whose damage may lead to increased susceptibility to pathogens and diseases. Due to a greater vulnerability of the immune system, immunotoxicity has the potential to be the early event of other toxic effects, and should be incorporated into environmental risk assessment. However, compared with other toxicity endpoints, e.g., genotoxicity, endocrine toxicity, or developmental toxicity, there are many challenges for the immunotoxicity test of environmental pollutants; this is due to the lack of detailed mechanisms of action and reliable assay methods. In addition, with the strong appeal for animal-free experiments, there has been a significant shift in the toxicity test paradigm, from traditional animal experiments to high-throughput in vitro assays that rely on cell lines. Therefore, there is an urgent need to build high-though put immunotoxicity test methods to screen massive environmental pollutants. This paper reviews the common methods of immunotoxicity assays, including assays for direct immunotoxicity and skin sensitization. Direct immunotoxicity mainly refers to immunosuppression, for which the assays mostly use mixed immune cells or isolated single cells from animals with obvious problems, such as high cost, complex experimental operation, strong variability and so on. Meanwhile, there have been no stable and standard cell lines targeting immune functions developed for high-throughput tests. Compared with direct immunotoxicity, skin sensitizer screening has developed relatively mature in vitro assay methods based on an adverse outcome pathway (AOP), which points out the way forward for the paradigm shift in toxicity tests. According to the experience of skin sensitizer screening, this paper proposes that we also should seek appropriate nodes and establish more complete AOPs for immunosuppression and other immune-mediated diseases. Then, effective in vitro immunotoxicity assay methods can be developed targeting key events, simultaneously coordinating the studies of the chemical immunotoxicity mechanism, and further promoting the paradigm shift in the immunotoxicity test.
Style APA, Harvard, Vancouver, ISO itp.
5

Sharma, R. P. "Evaluation of Pesticide Immunotoxicity". Toxicology and Industrial Health 4, nr 3 (lipiec 1988): 373–80. http://dx.doi.org/10.1177/074823378800400309.

Pełny tekst źródła
Streszczenie:
Immunotoxicologic effects have been reported for a number of pesticides. Since pesticides represent a large range of chemical classes, different types of chemicals may affect the complex immune system by a variety of mechanisms. A preliminary evaluation of pesticides for immunotoxicologic potential can best be incorporated in general subacute and chronic toxicity testing, with additional groups assigned for initial host-sensitivity assays. For chemicals that are possible candidates for immunotoxicity in preliminary assays, a comprehensive immunotoxicity screening has been suggested. Finally, emphasis should be given to mechanistic investigations to objectively assess the immunotoxicity of a new chemical and possible extrapolation to man. Animal models need to be developed for detecting the autoimmunologic potential of pesticides. This paper provides a brief listing of various approaches currently employed in the evaluation of immunotoxicity.
Style APA, Harvard, Vancouver, ISO itp.
6

Chiappelli, Francesco, Michelle A. Kung, Pablo Villanueva, Patricia Lee, Patrick Frost i Nerissa Prieto. "Immunotoxicity of Cocaethylene". Immunopharmacology and Immunotoxicology 17, nr 2 (styczeń 1995): 399–417. http://dx.doi.org/10.3109/08923979509019759.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

SAKAGUCHI, Takehiro, Sanae SAKAGUCHI i Yoshiro KUDO. "Immunotoxicity of Beryllium." Nippon Eiseigaku Zasshi (Japanese Journal of Hygiene) 52, nr 4 (1998): 611–17. http://dx.doi.org/10.1265/jjh.52.611.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Putman, E., J. W. Laan i H. Loveren. "Assessing immunotoxicity: guidelines". Fundamental and Clinical Pharmacology 17, nr 5 (październik 2003): 615–26. http://dx.doi.org/10.1046/j.1472-8206.2003.00181.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Laan, Jan Willem, i Henk Loveren. "Assessing immunotoxicity: guidelines". Fundamental and Clinical Pharmacology 19, nr 3 (czerwiec 2005): 329–30. http://dx.doi.org/10.1111/j.1472-8206.2005.00339.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Pfau, Jean C. "Immunotoxicity of asbestos". Current Opinion in Toxicology 10 (sierpień 2018): 1–7. http://dx.doi.org/10.1016/j.cotox.2017.11.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Sharma, Raghubir P. "Immunotoxicity of Mycotoxins". Journal of Dairy Science 76, nr 3 (marzec 1993): 892–97. http://dx.doi.org/10.3168/jds.s0022-0302(93)77415-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Bernier, Jacques, Michel Fournier, Yves Blais, Pierre Lombardi, Gaston Chevalier i Krzysztof Krzystyniak. "Immunotoxicity of aminocarb". Pesticide Biochemistry and Physiology 30, nr 3 (marzec 1988): 238–50. http://dx.doi.org/10.1016/0048-3575(88)90038-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Bernier, Jacques, Marek Rola-Pleszczynski, Denis Flipo, Krzysztof Krzystyniak i Michel Fournier. "Immunotoxicity of aminocarb". Pesticide Biochemistry and Physiology 36, nr 1 (styczeń 1990): 35–45. http://dx.doi.org/10.1016/0048-3575(90)90018-w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Bernier, J., M. Rola-Pleszczynski, K. Krzystyniak i M. Fournier. "Immunotoxicity of aminocarb". International Journal of Immunopharmacology 10 (styczeń 1988): 144. http://dx.doi.org/10.1016/0192-0561(88)90521-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Fournier, M., K. Krzystyniak, D. Nadeau, B. Trottier i G. Chevalier. "Immunotoxicity of dieldrin". International Journal of Immunopharmacology 10 (styczeń 1988): 144. http://dx.doi.org/10.1016/0192-0561(88)90522-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Takahiko Yoshida, Tadakatsu Shimamura i Sadayoshi Shigeta. "Immunotoxicity of arsenic". International Journal of Immunopharmacology 13, nr 6 (styczeń 1991): 772. http://dx.doi.org/10.1016/0192-0561(91)90312-u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Dansette, P. M., E. Bonierbale, C. Minoletti, P. H. Beaune, D. Pessayre i D. Mansuy. "Drug-induced immunotoxicity". European Journal of Drug Metabolism and Pharmacokinetics 23, nr 4 (grudzień 1998): 443–51. http://dx.doi.org/10.1007/bf03189993.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Kenna, J. G. "Towards predicting immunotoxicity". Trends in Pharmacological Sciences 11, nr 2 (luty 1990): 88. http://dx.doi.org/10.1016/0165-6147(90)90325-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Zhu, Yanzhu, Yanfei Li, Liguang Miao, Yingping Wang, Yanhuan Liu, Xijun Yan, Xuezhe Cui i Haitao Li. "Immunotoxicity of aluminum". Chemosphere 104 (czerwiec 2014): 1–6. http://dx.doi.org/10.1016/j.chemosphere.2013.10.052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

., Raju S., Kavimani S. ., Uma Maheshwara rao V. . i Sriramulu Reddy K. . "Immunotoxicants, Immunotoxicity and Immunotoxicity testing: An outline of in-vitro alternatives". Journal of Current Pharma Research 1, nr 4 (15.08.2011): 341–50. http://dx.doi.org/10.33786/jcpr.2011.v01i04.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Vial, T., B. Nicolas i J. Descotes. "CLINICAL IMMUNOTOXICITY OF PESTICIDES". Journal of Toxicology and Environmental Health 48, nr 3 (czerwiec 1996): 215–29. http://dx.doi.org/10.1080/009841096161294.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Toyoshima, Satoshi. "Immunotoxicity of environmental materials." Japan journal of water pollution research 10, nr 9 (1987): 528–31. http://dx.doi.org/10.2965/jswe1978.10.528.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Dobrovolskaia, Marina A., Dori R. Germolec i James L. Weaver. "Evaluation of nanoparticle immunotoxicity". Nature Nanotechnology 4, nr 7 (28.06.2009): 411–14. http://dx.doi.org/10.1038/nnano.2009.175.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Wehner, Nancy G., Carolyn Gasper, George Shopp, Joyce Nelson, Ken Draper, Suezanne Parker i Janet Clarke. "Immunotoxicity profile of natalizumab". Journal of Immunotoxicology 6, nr 2 (czerwiec 2009): 115–29. http://dx.doi.org/10.1080/15476910902977381.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Harris, David T., Debbie Sakiestewa, Dominic Titone, Raymond F. Robledo, R. Scott Young i Mark Witten. "Jet fuel-induced immunotoxicity". Toxicology and Industrial Health 16, nr 7-8 (sierpień 2000): 261–65. http://dx.doi.org/10.1177/074823370001600702.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

RODGERS, KATHLEEN, PAAL KLYKKEN, JOSHUA JACOBS, CARMELITA FRONDOZA, VESNA TOMAZIC i JUDITH ZELIKOFF. "Immunotoxicity of Medical Devices". Toxicological Sciences 36, nr 1 (1997): 1–3. http://dx.doi.org/10.1093/toxsci/36.1.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Van Loveren, H., J. Garssen, W. Slob, R. J. Vandebriel, W. H. deJong i J. G. Vos. "Risk assessment and immunotoxicity". Toxicology Letters 95 (lipiec 1998): 12–13. http://dx.doi.org/10.1016/s0378-4274(98)80048-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Hernández, M., R. Inocencio, C. Padilla, M. Macia i F. F. del Campo. "Immunotoxicity of peptidic cyanotoxins". Toxicology Letters 95 (lipiec 1998): 177. http://dx.doi.org/10.1016/s0378-4274(98)80705-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Lee, Dong. "On-target related immunotoxicity". Drug Metabolism and Pharmacokinetics 34, nr 1 (styczeń 2019): S4. http://dx.doi.org/10.1016/j.dmpk.2018.09.020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Wheeler, Jennifer. "Nonclinical immunotoxicity testing assessment". Drug Metabolism and Pharmacokinetics 34, nr 1 (styczeń 2019): S4—S5. http://dx.doi.org/10.1016/j.dmpk.2018.09.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Johnson, Arthur G., i Jean Regal. "Immunotoxicity of immunotherapeutic agents". Springer Seminars in Immunopathology 8, nr 4 (grudzień 1985): 347–59. http://dx.doi.org/10.1007/bf01857389.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Esa, Ahmed H., Glenn A. Warr i David S. Newcombe. "Immunotoxicity of organophosphorus compounds". Clinical Immunology and Immunopathology 49, nr 1 (październik 1988): 41–52. http://dx.doi.org/10.1016/0090-1229(88)90093-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Elsabahy, Mahmoud, i Karen L. Wooley. "Reassessment of nanomaterials immunotoxicity". Nano Today 20 (czerwiec 2018): 10–12. http://dx.doi.org/10.1016/j.nantod.2018.01.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Descotes, Jacques. "Immunotoxicity of monoclonal antibodies". mAbs 1, nr 2 (marzec 2009): 104–11. http://dx.doi.org/10.4161/mabs.1.2.7909.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

van Loveren, Henk, Johan Garssen, Cees de Heer i Joseph G. Vos. "Risk Assessment and Immunotoxicity". Drug Information Journal 31, nr 4 (październik 1997): 1363–67. http://dx.doi.org/10.1177/009286159703100439.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Descotes, Jacques. "Methods of evaluating immunotoxicity". Expert Opinion on Drug Metabolism & Toxicology 2, nr 2 (24.03.2006): 249–59. http://dx.doi.org/10.1517/17425255.2.2.249.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Lísková, A. "Immunotoxicity Study of Atrazine". Toxicology Letters 78 (sierpień 1995): 53. http://dx.doi.org/10.1016/03784-2749(59)48296-.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

RODGERS, K., P. KLYKKEN, J. JACOBS, C. FRONDOZA, V. TOMAZIC i J. ZELIKOFF. "Immunotoxicity of Medical Devices☆☆☆". Fundamental and Applied Toxicology 36, nr 1 (marzec 1997): 1–14. http://dx.doi.org/10.1006/faat.1996.2279.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Descotes, J., B. Nicolas i T. Vial. "Assessment of immunotoxic effects in humans". Clinical Chemistry 41, nr 12 (1.12.1995): 1870–73. http://dx.doi.org/10.1093/clinchem/41.12.1870.

Pełny tekst źródła
Streszczenie:
Abstract The immunotoxic effects of chemicals are varied and markedly different depending on the underlying pathogenesis, namely, direct immunotoxicity (including immunosuppression, immunodepression, and immunostimulation), hypersensitivity, and autoimmunity. A large number of immunological endpoints and functional assays have been proposed for use as biomarkers of immunotoxicity, but they often lack sensitivity or are poorly standardized, so that their relevance in assessing immunotoxic effects in humans is at best ill established. Examining sentinel immunopathological events in individuals with a defined history of chemical exposure is another approach, presumably more cost-effective at the present time. A multicenter collaboration is mandated, however, because these events are rare. We expect that progress in new technologies, e.g., molecular biology, will provide the sensitive and reliable biomarkers of immunotoxicity that are currently lacking.
Style APA, Harvard, Vancouver, ISO itp.
40

Langezaal, Ingrid, Sebastian Hoffmann, Thomas Hartung i Sandra Coecke. "Evaluation and Prevalidation of an Immunotoxicity Test Based on Human Whole-blood Cytokine Release". Alternatives to Laboratory Animals 30, nr 6 (listopad 2002): 581–95. http://dx.doi.org/10.1177/026119290203000605.

Pełny tekst źródła
Streszczenie:
Immunotoxicology is a relatively new field in toxicology, and is one of emerging importance, because immunotoxicity appears to contribute to the development of cancer, autoimmune disorders, allergies and other diseases. At present, there is a lack of human cell-based immunotoxicity assays for predicting the toxicity of xenobiotics toward the immune system in a simple, fast, economical and reliable way. Existing immunotoxicity tests are mainly performed in animals, although species differences favour human-based testing. Whole-blood cytokine release models have attracted increasing interest, and are broadly used for pharmacological in vitro and ex vivo studies, as well as for pyrogenicity testing. We have adapted those methods for immunotoxicity testing, to permit the potency testing of immunostimulants and immunosuppressants. Following stimulation with a lipopolysaccharide or staphylococcal enterotoxin B, monocytes and lymphocytes release interleukin-1β and interleukin-4, respectively. Thirty-one pharmaceutical compounds, with known effects on the immune system, were used to optimise and standardise the method, by analysing their effects on cytokine release. The in vitro results were expressed as IC50 values for immunosuppression, and SC4 (fourfold increase) values for immunostimulation, and compared with therapeutic serum concentrations of the compounds in patients, and in vivo LD50 values from animal studies. The in vitro results correlated well with the in vivo data, so the test appears to reflect immunomodulation. Results were reproducible (CV = 20 ± 5%), and the method could be transferred to another laboratory (r2 = 0.99). We therefore propose this method for further validation and for use in immunotoxicity testing strategies.
Style APA, Harvard, Vancouver, ISO itp.
41

Holladay, S. D., i B. L. Blaylock. "The mouse as a model for developmental immunotoxicology". Human & Experimental Toxicology 21, nr 9-10 (wrzesień 2002): 525–31. http://dx.doi.org/10.1191/0960327102ht292oa.

Pełny tekst źródła
Streszczenie:
The laboratory mouse has been the most extensively used model system for demonstrating postnatal immune deficits following perinatal immunotoxicant exposure. Assays utilized have historically been those developed for adult mice. Clear gaps in the available database exist, however, regarding the predictive strength of adult mouse immune screens for detecting either transient or long-lasting postnatal immune suppression. Limited information is also available regarding postnatal ages when various immune assays can be first employed to detect developmental immunotoxicity in mice. Furthermore, difficulties and expense inherent with breeding of in-bred mice, as used for adult immunotoxicity studies, raise questions regarding the feasibility of an in-bred mouse model as a standard, widely available developmental immunotoxicity testing system. These and additional concerns will need to be addressed as a model system with utility for studying developmental immunotoxicants is produced.
Style APA, Harvard, Vancouver, ISO itp.
42

Lin, Wang, Tien-Chieh Hung, Tomofumi Kurobe, Yi Wang i Pinhong Yang. "Microcystin-Induced Immunotoxicity in Fishes: A Scoping Review". Toxins 13, nr 11 (29.10.2021): 765. http://dx.doi.org/10.3390/toxins13110765.

Pełny tekst źródła
Streszczenie:
Cyanobacteria (blue-green algae) have been present on Earth for over 2 billion years, and can produce a variety of bioactive molecules, such as cyanotoxins. Microcystins (MCs), the most frequently detected cyanotoxins, pose a threat to the aquatic environment and to human health. The classic toxic mechanism of MCs is the inhibition of the protein phosphatases 1 and 2A (PP1 and PP2A). Immunity is known as one of the most important physiological functions in the neuroendocrine-immune network to prevent infections and maintain internal homoeostasis in fish. The present review aimed to summarize existing papers, elaborate on the MC-induced immunotoxicity in fish, and put forward some suggestions for future research. The immunomodulatory effects of MCs in fish depend on the exposure concentrations, doses, time, and routes of exposure. Previous field and laboratory studies provided strong evidence of the associations between MC-induced immunotoxicity and fish death. In our review, we summarized that the immunotoxicity of MCs is primarily characterized by the inhibition of PP1 and PP2A, oxidative stress, immune cell damage, and inflammation, as well as apoptosis. The advances in fish immunoreaction upon encountering MCs will benefit the monitoring and prediction of fish health, helping to achieve an ecotoxicological goal and to ensure the sustainability of species. Future studies concerning MC-induced immunotoxicity should focus on adaptive immunity, the hormesis phenomenon and the synergistic effects of aquatic microbial pathogens.
Style APA, Harvard, Vancouver, ISO itp.
43

Schamber, R. A., E. L. Belden i M. F. Raisbeck. "Immunotoxicity of Chronic Selenium Exposure". Journal American Society of Mining and Reclamation 195, nr 1 (1995): 384–394393. http://dx.doi.org/10.21000/jasmr95010384.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Stefanidou, Maria, Ariadni C. Loutsidou, Christos T. Chasapis i Chara A. Spiliopoulou. "Immunotoxicity of Cocaine and Crack". Current Drug Abuse Reviewse 4, nr 2 (1.06.2011): 95–97. http://dx.doi.org/10.2174/1874473711104020095.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Corsini, E. "Evaluating cytokines in immunotoxicity testing". Toxicology Letters 350 (wrzesień 2021): S8. http://dx.doi.org/10.1016/s0378-4274(21)00251-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Wesley, Sarah F., Aya Haggiagi, Kiran T. Thakur i Philip L. De Jager. "Neurological Immunotoxicity from Cancer Treatment". International Journal of Molecular Sciences 22, nr 13 (23.06.2021): 6716. http://dx.doi.org/10.3390/ijms22136716.

Pełny tekst źródła
Streszczenie:
The emergence of immune-based treatments for cancer has led to a growing field dedicated to understanding and managing iatrogenic immunotoxicities that arise from these agents. Immune-related adverse events (irAEs) can develop as isolated events or as toxicities affecting multiple body systems. In particular, this review details the neurological irAEs from immune checkpoint inhibitors (ICI) and chimeric antigen receptor (CAR) T cell immunotherapies. The recognition and treatment of neurological irAEs has variable success, depending on the severity and nature of the neurological involvement. Understanding the involved mechanisms, predicting those at higher risk for irAEs, and establishing safety parameters for resuming cancer immunotherapies after irAEs are all important fields of ongoing research.
Style APA, Harvard, Vancouver, ISO itp.
47

Descotes, Jacques, Brigitte Nicolas, Thierry Vial i Jean-François Nicolas. "Biomarkers of immunotoxicity in man". Biomarkers 1, nr 2 (styczeń 1996): 77–80. http://dx.doi.org/10.3109/13547509609088673.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Assumaidaee, Ajwad A. M. "Zearalenone Mycotoxicosis: Pathophysiology and Immunotoxicity". Iraqi Journal of Veterinary Medicine 44, nr 1 (28.06.2020): 29–38. http://dx.doi.org/10.30539/ijvm.v44i1.932.

Pełny tekst źródła
Streszczenie:
Mycotoxicosis refers to the deleterious pathological effects of different types toxins produced by some worldwide distributing fungi. Mycotoxins, as secondary metabolites are affecting different organs and systems both in animal and human beings. Zeralenone (ZEA), the well-known estrogenic mycotoxins, is an immunotoxic agent. This macrocyclic beta-resorcyclic acid lactone, is mycotoxin procreated as a secondary metabolic byproduct by several types of Fusarium, encompassing F. roseum,F. culmorum, F. graminearum and different other types. Attributing to its potent estrogenic activity, ZEA has been incriminated as one of the major causes of female reproductive disorders. Thus, the purpose of the present review article is to appraise the pathophysiological consequences and sub sequent explore the progress in the research field of zearalenone immunotoxicities.
Style APA, Harvard, Vancouver, ISO itp.
49

Karol, Meryl H., i Ruzhi Jin. "Mechanisms of immunotoxicity to isocyanates". Chemical Research in Toxicology 4, nr 5 (wrzesień 1991): 503–9. http://dx.doi.org/10.1021/tx00023a001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Voccia, I., B. Blakley, P. Brousseau i M. Fournier. "Immunotoxicity of pesticides: a review". Toxicology and Industrial Health 15, nr 1 (1.01.1999): 119–32. http://dx.doi.org/10.1191/074823399678846637.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii