Artykuły w czasopismach na temat „Immunity control”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Immunity control.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Immunity control”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Bendelac, Albert, i Douglas T. Fearon. "Innate immunity Innate pathways that control acquired immunity". Current Opinion in Immunology 9, nr 1 (luty 1997): 1–3. http://dx.doi.org/10.1016/s0952-7915(97)80151-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Busslinger, M., i A. Tarakhovsky. "Epigenetic Control of Immunity". Cold Spring Harbor Perspectives in Biology 6, nr 6 (1.06.2014): a019307. http://dx.doi.org/10.1101/cshperspect.a019307.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Busslinger, M., i A. Tarakhovsky. "Epigenetic Control of Immunity". Cold Spring Harbor Perspectives in Biology 6, nr 7 (1.07.2014): a024174. http://dx.doi.org/10.1101/cshperspect.a024174.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Tracey, Kevin J. "Reflex control of immunity". Nature Reviews Immunology 9, nr 6 (czerwiec 2009): 418–28. http://dx.doi.org/10.1038/nri2566.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Gamboa, Lena, Ali H. Zamat i Gabriel A. Kwong. "Synthetic immunity by remote control". Theranostics 10, nr 8 (2020): 3652–67. http://dx.doi.org/10.7150/thno.41305.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

ALVAREZ, MARÍA E., FLORENCIA NOTA i DAMIÁN A. CAMBIAGNO. "Epigenetic control of plant immunity". Molecular Plant Pathology 11, nr 4 (1.06.2010): 563–76. http://dx.doi.org/10.1111/j.1364-3703.2010.00621.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chen, Huihui, Xiaohan Ning i Zhengfan Jiang. "Caspases control antiviral innate immunity". Cellular & Molecular Immunology 14, nr 9 (10.07.2017): 736–47. http://dx.doi.org/10.1038/cmi.2017.44.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Bachère, Evelyne. "Shrimp immunity and disease control". Aquaculture 191, nr 1-3 (listopad 2000): 3–11. http://dx.doi.org/10.1016/s0044-8486(00)00413-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Shanker, Anil. "Adaptive control of innate immunity". Immunology Letters 131, nr 2 (lipiec 2010): 107–12. http://dx.doi.org/10.1016/j.imlet.2010.04.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kiberstis, P. A. "Oncogene control of antitumor immunity". Science 352, nr 6282 (7.04.2016): 183. http://dx.doi.org/10.1126/science.352.6282.183-d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Fric, Jan, Teresa Zelante, Alicia Y. W. Wong, Alexandra Mertes, Hong-Bing Yu i Paola Ricciardi-Castagnoli. "NFAT control of innate immunity". Blood 120, nr 7 (16.08.2012): 1380–89. http://dx.doi.org/10.1182/blood-2012-02-404475.

Pełny tekst źródła
Streszczenie:
Abstract The calcineurin/nuclear factor of activated T cells (NFAT) signaling pathway mediates multiple adaptive T-cell functions, but recent studies have shown that calcineurin/NFAT signaling also contributes to innate immunity and regulates the homeostasis of innate cells. Myeloid cells, including granulocytes and dendritic cells, can promote inflammation, regulate adaptive immunity, and are essential mediators of early responses to pathogens. Microbial ligation of pattern-recognition receptors, such as TLR4, CD14, and dectin 1, is now known to induce the activation of calcineurin/NFAT signaling in myeloid cells, a finding that has provided new insights into the molecular pathways that regulate host protection. Inhibitors of calcineurin/NFAT binding, such as cyclosporine A and FK506, are broadly used in organ transplantation and can act as potent immunosuppressive drugs in a variety of different disorders. There is increasing evidence that these agents influence innate responses as well as inhibiting adaptive T-cell functions. This review focuses on the role of calcineurin/NFAT signaling in myeloid cells, which may contribute to the various unexplained effects of immunosuppressive drugs already being used in the clinic.
Style APA, Harvard, Vancouver, ISO itp.
12

Pouikli, Andromachi, i Christian Frezza. "Metabolic control of antitumor immunity". Science 381, nr 6664 (22.09.2023): 1287–88. http://dx.doi.org/10.1126/science.adk1785.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Akira, Shizuo, i Kazuhiko Maeda. "Control of RNA Stability in Immunity". Annual Review of Immunology 39, nr 1 (26.04.2021): 481–509. http://dx.doi.org/10.1146/annurev-immunol-101819-075147.

Pełny tekst źródła
Streszczenie:
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3′ untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3′ UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
Style APA, Harvard, Vancouver, ISO itp.
14

Ansaldo, Eduard, Taylor K. Farley i Yasmine Belkaid. "Control of Immunity by the Microbiota". Annual Review of Immunology 39, nr 1 (26.04.2021): 449–79. http://dx.doi.org/10.1146/annurev-immunol-093019-112348.

Pełny tekst źródła
Streszczenie:
The immune system has coevolved with extensive microbial communities living on barrier sites that are collectively known as the microbiota. It is increasingly clear that microbial antigens and metabolites engage in a constant dialogue with the immune system, leading to microbiota-specific immune responses that occur in the absence of inflammation. This form of homeostatic immunity encompasses many arms of immunity, including B cell responses, innate-like T cells, and conventional T helper and T regulatory responses. In this review we summarize known examples of innate-like T cell and adaptive immunity to the microbiota, focusing on fundamental aspects of commensal immune recognition across different barrier sites. Furthermore, we explore how this cross talk is established during development, emphasizing critical temporal windows that establish long-term immune function. Finally, we highlight how dysregulation of immunity to the microbiota can lead to inflammation and disease, and we pinpoint outstanding questions and controversies regarding immune system–microbiota interactions.
Style APA, Harvard, Vancouver, ISO itp.
15

Collins, Nicholas, i Yasmine Belkaid. "Control of immunity via nutritional interventions". Immunity 55, nr 2 (luty 2022): 210–23. http://dx.doi.org/10.1016/j.immuni.2022.01.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Machado, João Paulo B., Iara P. Calil, Anésia A. Santos i Elizabeth P. B. Fontes. "Translational control in plant antiviral immunity". Genetics and Molecular Biology 40, nr 1 suppl 1 (13.02.2017): 292–304. http://dx.doi.org/10.1590/1678-4685-gmb-2016-0092.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Harjes, Ulrike. "Germline control of anti-tumour immunity". Nature Reviews Cancer 20, nr 8 (17.06.2020): 414. http://dx.doi.org/10.1038/s41568-020-0282-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Lau, Henry Y. K., Vicky W. K. Wong i Ivan S. K. Lee. "Immunity-based autonomous guided vehicles control". Applied Soft Computing 7, nr 1 (styczeń 2007): 41–57. http://dx.doi.org/10.1016/j.asoc.2005.02.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Brave, Martina, Dana J. Lukin i Sridhar Mani. "Microbial control of intestinal innate immunity". Oncotarget 6, nr 24 (3.07.2015): 19962–63. http://dx.doi.org/10.18632/oncotarget.4780.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Mehta, Manan M., Samuel E. Weinberg i Navdeep S. Chandel. "Mitochondrial control of immunity: beyond ATP". Nature Reviews Immunology 17, nr 10 (3.07.2017): 608–20. http://dx.doi.org/10.1038/nri.2017.66.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Gray-Owen, Scott D., i Richard S. Blumberg. "CEACAM1: contact-dependent control of immunity". Nature Reviews Immunology 6, nr 6 (czerwiec 2006): 433–46. http://dx.doi.org/10.1038/nri1864.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Pelgrom, Leonard R., i Bart Everts. "Metabolic control of type 2 immunity". European Journal of Immunology 47, nr 8 (14.07.2017): 1266–75. http://dx.doi.org/10.1002/eji.201646728.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Jerison, Elizabeth. "Dynamical control of immunity and inflammation". Biophysical Journal 123, nr 3 (luty 2024): 309a. http://dx.doi.org/10.1016/j.bpj.2023.11.1908.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Jin, Hyo Sun, Hyun-Woo Suh, Seong-Jun Kim i Eun-Kyeong Jo. "Mitochondrial Control of Innate Immunity and Inflammation". Immune Network 17, nr 2 (2017): 77. http://dx.doi.org/10.4110/in.2017.17.2.77.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Banchereau, Jacques, i Ralph M. Steinman. "Dendritic cells and the control of immunity". Nature 392, nr 6673 (marzec 1998): 245–52. http://dx.doi.org/10.1038/32588.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Lau, H. Y. K., i V. W. K. Wong. "An immunity-based distributed multiagent-control framework". IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 36, nr 1 (styczeń 2006): 91–108. http://dx.doi.org/10.1109/tsmca.2005.859103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Moehlman, Andrew T., i Richard J. Youle. "Mitochondrial Quality Control and Restraining Innate Immunity". Annual Review of Cell and Developmental Biology 36, nr 1 (6.10.2020): 265–89. http://dx.doi.org/10.1146/annurev-cellbio-021820-101354.

Pełny tekst źródła
Streszczenie:
Maintaining mitochondrial health is essential for the survival and function of eukaryotic organisms. Misfunctioning mitochondria activate stress-responsive pathways to restore mitochondrial network homeostasis, remove damaged or toxic proteins, and eliminate damaged organelles via selective autophagy of mitochondria, a process termed mitophagy. Failure of these quality control pathways is implicated in the pathogenesis of Parkinson's disease and other neurodegenerative diseases. Impairment of mitochondrial quality control has been demonstrated to activate innate immune pathways, including inflammasome-mediated signaling and the antiviral cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING)–regulated interferon response. Immune system malfunction is a common hallmark in many neurodegenerative diseases; however, whether inflammation suppresses or exacerbates disease pathology is still unclear. The goal of this review is to provide a historical overview of the field, describe mechanisms of mitochondrial quality control, and highlight recent advances on the emerging role of mitochondria in innate immunity and inflammation.
Style APA, Harvard, Vancouver, ISO itp.
28

Park, Eun Jeong, Motomu Shimaoka i Hiroshi Kiyono. "MicroRNA-mediated dynamic control of mucosal immunity". International Immunology 29, nr 4 (1.04.2017): 157–63. http://dx.doi.org/10.1093/intimm/dxx019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Zhao, Ende, Huanbin Xu, Lin Wang, Ilona Kryczek, Ke Wu, Yu Hu, Guobin Wang i Weiping Zou. "Bone marrow and the control of immunity". Cellular & Molecular Immunology 9, nr 1 (24.10.2011): 11–19. http://dx.doi.org/10.1038/cmi.2011.47.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Ottenhoff, Tom H. M., Frank A. W. Verreck, Marieke A. Hoeve i Esther van de Vosse. "Control of human host immunity to mycobacteria". Tuberculosis 85, nr 1-2 (styczeń 2005): 53–64. http://dx.doi.org/10.1016/j.tube.2004.09.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Quintana, Francisco J., i David H. Sherr. "Aryl Hydrocarbon Receptor Control of Adaptive Immunity". Pharmacological Reviews 65, nr 4 (1.08.2013): 1148–61. http://dx.doi.org/10.1124/pr.113.007823.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Lau, Henry Y. K., i Vicky W. K. Wong. "An immunity approach to strategic behavioral control". Engineering Applications of Artificial Intelligence 20, nr 3 (kwiecień 2007): 289–306. http://dx.doi.org/10.1016/j.engappai.2006.06.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Liu, Juan, Cheng Qian i Xuetao Cao. "Post-Translational Modification Control of Innate Immunity". Immunity 45, nr 1 (lipiec 2016): 15–30. http://dx.doi.org/10.1016/j.immuni.2016.06.020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Wakelin, D. "Genetic control of immunity to helminth infections". Parasitology Today 1, nr 1 (lipiec 1985): 17–23. http://dx.doi.org/10.1016/0169-4758(85)90101-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Potter, Tim, i Kat Baxter-Smith. "Modernising BRD control". Livestock 25, nr 6 (2.11.2020): 292. http://dx.doi.org/10.12968/live.2020.25.6.292.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Anandasabapathy, Niroshana, Rachel Feder, Shamim Mollah, Sze-Wah Tse, Maria Paula Longhi, Saurabh Mehandru, Ines Matos i in. "Classical Flt3L-dependent dendritic cells control immunity to protein vaccine". Journal of Experimental Medicine 211, nr 9 (18.08.2014): 1875–91. http://dx.doi.org/10.1084/jem.20131397.

Pełny tekst źródła
Streszczenie:
DCs are critical for initiating immunity. The current paradigm in vaccine biology is that DCs migrating from peripheral tissue and classical lymphoid-resident DCs (cDCs) cooperate in the draining LNs to initiate priming and proliferation of T cells. Here, we observe subcutaneous immunity is Fms-like tyrosine kinase 3 ligand (Flt3L) dependent. Flt3L is rapidly secreted after immunization; Flt3 deletion reduces T cell responses by 50%. Flt3L enhances global T cell and humoral immunity as well as both the numbers and antigen capture capacity of migratory DCs (migDCs) and LN-resident cDCs. Surprisingly, however, we find immunity is controlled by cDCs and actively tempered in vivo by migDCs. Deletion of Langerin+ DC or blockade of DC migration improves immunity. Consistent with an immune-regulatory role, transcriptomic analyses reveals different skin migDC subsets in both mouse and human cluster together, and share immune-suppressing gene expression and regulatory pathways. These data reveal that protective immunity to protein vaccines is controlled by Flt3L-dependent, LN-resident cDCs.
Style APA, Harvard, Vancouver, ISO itp.
37

Polushin, P. A., O. R. Nikitin i I. R. Dubov. "Quasioptimal control in diversed signal transmission". IOP Conference Series: Materials Science and Engineering 1227, nr 1 (1.02.2022): 012003. http://dx.doi.org/10.1088/1757-899x/1227/1/012003.

Pełny tekst źródła
Streszczenie:
Abstract To increase the noise immunity of signal transmission, diversity methods are now widely used, consisting in obtaining and combining several copies of the transmitted signal. In this case, it is possible to perform a combination either before the detection procedure or after it. If you do not take into account the possible use of non-linear types of modulation, then the pre-detector combination always has advantages over the post-detector combination. However, taking into account the nonlinear properties of the transmitted signals, new possibilities appear for increasing the noise immunity in combination and simplifying the processing. In the case of using analog signals, in particular frequency modulation, at certain points in time, the pre-detection combination can lose to the post-detection combination. At the same time, by combining pre-detector and post-detector combining circuits, it is possible to lower the threshold level during demodulation and increase noise immunity. In the case of using digital modes of modulation, it is possible to process only the signals after demodulation without reducing the noise immunity and to eliminate the need for preliminary phasing of the diversity signals before detection.
Style APA, Harvard, Vancouver, ISO itp.
38

Watts, Tania H. "Stepping up Th1 immunity to control phagosomal bacteria". Trends in Immunology 42, nr 6 (czerwiec 2021): 461–63. http://dx.doi.org/10.1016/j.it.2021.04.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Schlosser, Thomas P. "Sovereign Immunity: Should the Sovereign Control the Purse?" American Indian Law Review 24, nr 2 (1999): 309. http://dx.doi.org/10.2307/20070637.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Carter, Philip B. "Immunity to Parasites: How Animals Control Parasite Infections". American Journal of Tropical Medicine and Hygiene 34, nr 4 (1.07.1985): 825. http://dx.doi.org/10.4269/ajtmh.1985.34.4.tm0340040825a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

BACON, L. D., i R. R. DIETERT. "Genetic Control of Cell-Mediated Immunity in Chickens". Poultry Science 70, nr 5 (maj 1991): 1187–99. http://dx.doi.org/10.3382/ps.0701187.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Befus, A. Dean, Derek Wakelin i Edward Arnold. "Immunity to Parasites: How Animals Control Parasite Infections". Journal of Parasitology 71, nr 3 (czerwiec 1985): 364. http://dx.doi.org/10.2307/3282019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Schiering, Chris, Emma Wincent, Amina Metidji, Andrea Iseppon, Ying Li, Alexandre J. Potocnik, Sara Omenetti i in. "Feedback control of AHR signalling regulates intestinal immunity". Nature 542, nr 7640 (luty 2017): 242–45. http://dx.doi.org/10.1038/nature21080.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Asaturova, A. V., A. V. Tregubova i D. V. Shushkanova. "Inhibition of immunity control points in ovarian cancer". CLINICAL AND EXPERIMENTAL MORPHOLOGY 9, nr 1 (2020): 11–19. http://dx.doi.org/10.31088/cem2020.9.1.11-19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Grant, Audrey V., Christian Roussilhon, Richard Paul i Anavaj Sakuntabhai. "The genetic control of immunity to Plasmodium infection". BMC Immunology 16, nr 1 (2015): 14. http://dx.doi.org/10.1186/s12865-015-0078-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Naik, S., N. Bouladoux, C. Wilhelm, M. J. Molloy, R. Salcedo, W. Kastenmuller, C. Deming i in. "Compartmentalized Control of Skin Immunity by Resident Commensals". Science 337, nr 6098 (26.07.2012): 1115–19. http://dx.doi.org/10.1126/science.1225152.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Palm, Noah W., i Ruslan Medzhitov. "Pattern recognition receptors and control of adaptive immunity". Immunological Reviews 227, nr 1 (styczeń 2009): 221–33. http://dx.doi.org/10.1111/j.1600-065x.2008.00731.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Secher, Thomas, Olivier Gaillot, Bernhard Ryffel i Mathias Chamaillard. "Remote Control of Intestinal Tumorigenesis by Innate Immunity". Cancer Research 70, nr 5 (28.02.2010): 1749–52. http://dx.doi.org/10.1158/0008-5472.can-09-3401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Huang, Lei, i Andrew L. Mellor. "Metabolic control of tumour progression and antitumour immunity". Current Opinion in Oncology 26, nr 1 (styczeń 2014): 92–99. http://dx.doi.org/10.1097/cco.0000000000000035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Wang, Tian. "Flavivirus Immunity in Disease Control and Viral Pathogenesis". Viral Immunology 33, nr 1 (1.02.2020): 1–2. http://dx.doi.org/10.1089/vim.2019.29047.tjt.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii