Artykuły w czasopismach na temat „Imaging systems in medicine”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Imaging systems in medicine.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Imaging systems in medicine”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Foppen, Wouter, Nelleke Tolboom i Pim A. de Jong. "Systems Radiology and Personalized Medicine". Journal of Personalized Medicine 11, nr 8 (4.08.2021): 769. http://dx.doi.org/10.3390/jpm11080769.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Hacker, Marcus, Rodney J. Hicks i Thomas Beyer. "Applied Systems Biology—embracing molecular imaging for systemic medicine". European Journal of Nuclear Medicine and Molecular Imaging 47, nr 12 (7.04.2020): 2721–25. http://dx.doi.org/10.1007/s00259-020-04798-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Line, Bruce R. "Nuclear medicine information management systems". Seminars in Nuclear Medicine 20, nr 3 (lipiec 1990): 242–69. http://dx.doi.org/10.1016/s0001-2998(05)80033-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zaidi, Habib. "Multimodality molecular imaging: Paving the way for personalized medicine". Medical Technologies Journal 1, nr 3 (17.09.2017): 44. http://dx.doi.org/10.26415/2572-004x-vol1iss3p44-46.

Pełny tekst źródła
Streszczenie:
Early diagnosis and therapy increasingly operate at the cellular, molecular or even at the genetic level. As diagnostic techniques transition from the systems to the molecular level, the role of multimodality molecular imaging becomes increasingly important. Positron emission tomography (PET), x-ray CT and MRI are powerful techniques for in vivo imaging. The inability of PET to provide anatomical information is a major limitation of standalone PET systems. Combining PET and CT proved to be clinically relevant and successfully reduced this limitation by providing the anatomical information required for localization of metabolic abnormalities. However, this technology still lacks the excellent soft-tissue contrast provided by MRI. Standalone MRI systems reveal structure and function, but cannot provide insight into the physiology and/or the pathology at the molecular level. The combination of PET and MRI, enabling truly simultaneous acquisition, bridges the gap between molecular and systems diagnosis. MRI and PET offer richly complementary functionality and sensitivity; fusion into a combined system offering simultaneous acquisition will capitalize the strengths of each, providing a hybrid technology that is greatly superior to the sum of its parts. This talk also reflects the tremendous increase in interest in quantitative molecular imaging using PET as both clinical and research imaging modality in the past decade. It offers a brief overview of the entire range of quantitative PET imaging from basic principles to various steps required for obtaining quantitatively accurate data from dedicated standalone PET and combined PET/CT and PET/MR systems including algorithms used to correct for physical degrading factors and to quantify tracer uptake and volume for radiation therapy treatment planning. Future opportunities and the challenges facing the adoption of multimodality imaging technologies and their role in biomedical research will also be addressed.
Style APA, Harvard, Vancouver, ISO itp.
5

Stephane Mananga, Eugene. "Recent Advances of Radiation Detector Systems in Nuclear Medicine Imaging". JOURNAL OF BIOINFORMATICS AND PROTEOMICS REVIEW 2, nr 2 (2016): 169–71. http://dx.doi.org/10.15436/2381-0793.16.1183.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Lewellen, Tom K., Don DeWitt, Robert S. Miyaoka i Scott Hauck. "A Building Block for Nuclear Medicine Imaging Systems Data Acquisition". IEEE Transactions on Nuclear Science 61, nr 1 (luty 2014): 79–87. http://dx.doi.org/10.1109/tns.2013.2295037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Lee, Daniel Y., i King C. P. Li. "Systems Diagnostics: The Systems Approach to Molecular Imaging". American Journal of Roentgenology 193, nr 2 (sierpień 2009): 287–94. http://dx.doi.org/10.2214/ajr.09.2866.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Duby, Tomas, Noam Kaplan i Yuval Zur. "4749948 NMR imaging systems". Magnetic Resonance Imaging 7, nr 4 (lipiec 1989): VI—VII. http://dx.doi.org/10.1016/0730-725x(89)90516-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

&NA;. "3M DryView Laser Imaging Systems". Investigative Radiology 31, nr 6 (czerwiec 1996): 385. http://dx.doi.org/10.1097/00004424-199606000-00015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sivananthan, U. M. "Medical imaging systems techniques and applications; cardiovascular systems". Radiography 5, nr 2 (maj 1999): 120. http://dx.doi.org/10.1016/s1078-8174(99)90044-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Bilgen, Mehmet. "Feasibility and Merits of Performing Preclinical Imaging on Clinical Radiology and Nuclear Medicine Systems". International Journal of Molecular Imaging 2013 (30.12.2013): 1–8. http://dx.doi.org/10.1155/2013/923823.

Pełny tekst źródła
Streszczenie:
Aim. Researchers have limited access to systems dedicated to imaging small laboratory animals. This paper aims to investigate the feasibility and merits of performing preclinical imaging on clinical systems. Materials and Methods. Scans were performed on rat and mouse models of diseases or injuries on four radiology systems, tomosynthesis, computed tomography (CT), positron emission tomography/computed tomography (PET-CT), and Magnetic Resonance Imaging (MRI), based on the availability at the author’s institute. Results. Tomosysthesis delineated soft tissue anatomy and hard tissue structure with superb contrast and spatial resolution at minimal scan time and effort. CT allowed high resolution volumetric visualization of bones. Molecular imaging with PET was useful for detecting cancerous tissue in mouse but at the expense of poor resolution. MRI depicted abnormal or intervened tissue at quality and resolution sufficient for experimental studies. The paper discussed limitations of the clinical systems in preclinical imaging as well as challenges regarding the need of additional gadgets, modifications, or upgrades required for longitudinally scanning animals under anesthesia while monitoring their vital signs. Conclusion. Clinical imaging technologies can potentially make cost-effective and efficient contributions to preclinical efforts in obtaining anatomical, structural, and functional information from the underlying tissue while minimally compromising the data quality in certain situations.
Style APA, Harvard, Vancouver, ISO itp.
12

Kang, Shu, Ian R. Zurutuza i Raiyan T. Zaman. "Molecular Imaging in Medicine: Past, Present, and Future". JSM Cardiothoracic Surgery 5, nr 1 (14.12.2023): 1–8. http://dx.doi.org/10.47739/2573-1297.cardiothoracicsurgery.1019.

Pełny tekst źródła
Streszczenie:
Recent advances in molecular imaging have facilitated early disease detection, diagnosis, and therapeutic efficacy monitoring. Clinicians aspire to achieve prompt diagnosis, provide personalized treatments, and accurately monitor and quantify therapy effectiveness. This has fueled a growing interest in tracing biomarkers and biochemicals associated with disease progression. Identifying crucial biomarkers and refining accurate, minimally invasive monitoring methods are the pivotal focuses of ongoing molecular imaging research. Consequently, there is a notable surge of interest in developing molecular probes and multi-modal systems to enhance imaging capabilities. This review is intended to provide an overview of the promise and limitations of different modalities employed in molecular imaging for patient care, along with the ongoing research aimed at innovating novel imaging agents and devices. Molecular imaging holds the potential to revolutionize disease diagnosis and treatment.
Style APA, Harvard, Vancouver, ISO itp.
13

&NA;. "3M Medical Imaging Systems, Siemens Sign Qualification Agreement for 3M Dry View Laser Imaging Systems". Investigative Radiology 31, nr 4 (kwiecień 1996): 248. http://dx.doi.org/10.1097/00004424-199604000-00013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Samira Maliyeva, Samira Maliyeva. "BIOMEDICAL SMART HOME SYSTEMS". PIRETC-Proceeding of The International Research Education & Training Centre 23, nr 02 (19.04.2023): 125–33. http://dx.doi.org/10.36962/piretc23022023-125.

Pełny tekst źródła
Streszczenie:
Biomedical engineering is a system that includes the design, manufacture and operation of various systems, devices and methods used in the diagnosis and treatment of problems that may occur in human health. In recent years, as in the whole world, some important innovations in this field apply in the research conducted in Azerbaijan. Over the past 30 years, biomedical engineering has been established as an independent field of science and engineering. Currently, biological medicine is not limited to the field of medicine, it has continued to develop as a potential field, making an important contribution to the dentistry, veterinary medicine, rehabilitation, physical education, and sports fields. The types of biomedical devices available in stationary health care institutions are expressed in hundreds, and the number is expressed in thousands. From implant to stethoscope, from complex imaging medical devices such as MRI (magnetic resonance imaging) and X-rays devices to patient beds, many products that could be considered simpler have been designed by engineers. In modern hospitals, sophisticated engineering devices are used by doctors to treat patients. Biomedical smart home system or health-based smart homes are designed for patients who feel the need to return home after an average time from a hospital or healthcare facility, or who need to receive care at home. The article presents information about innovations in the mentioned field. Keywords: Bioengineering, biomedical equipment, biomedical sensor, smart home
Style APA, Harvard, Vancouver, ISO itp.
15

Chandra, Ramesh. "4818943 Phantom for imaging systems". Magnetic Resonance Imaging 7, nr 5 (wrzesień 1989): IV. http://dx.doi.org/10.1016/0730-725x(89)90428-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Punchard, William F., i Robert D. Pillsbury. "4733189 Magnetic resonance imaging systems". Magnetic Resonance Imaging 7, nr 3 (maj 1989): III. http://dx.doi.org/10.1016/0730-725x(89)90567-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Bath, M. "Evaluating imaging systems: practical applications". Radiation Protection Dosimetry 139, nr 1-3 (10.02.2010): 26–36. http://dx.doi.org/10.1093/rpd/ncq007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

JARRITT, P. H., i P. D. ACTON. "PET imaging using gamma camera systems". Nuclear Medicine Communications 17, nr 9 (wrzesień 1996): 758–66. http://dx.doi.org/10.1097/00006231-199609000-00006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

DENKBAŞ, EMIR B., i A. VASEASHTA. "NANOTECHNOLOGY IN MEDICINE AND HEALTH SCIENCES". Nano 03, nr 04 (sierpień 2008): 263–69. http://dx.doi.org/10.1142/s1793292008001313.

Pełny tekst źródła
Streszczenie:
The present investigation is aimed at the biomedical aspects of nanomaterials in medicine and health sciences. Synthesis of nanomaterials can be categorized into three main sections based on their system designation, viz. nanocolloidal systems, surface modification of the biomaterials at molecular level, and nanodevices. An overview of functionalized nanomaterials, devices, and systems in drug and gene delivery, controlled release systems, molecular imaging and diagnostics, cardiac therapy, dental care, orthopedics, and targeted cancer therapy is presented. We further present some preliminary results of our investigation of biodegradable polymeric nanospheres and nanofibers with significant applications in health and medicine.
Style APA, Harvard, Vancouver, ISO itp.
20

Bamber, Jeffrey C. "Photoacoustic imaging in cancer medicine and research: Systems, results and future directions". Journal of the Acoustical Society of America 145, nr 3 (marzec 2019): 1777. http://dx.doi.org/10.1121/1.5101505.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Schillaci, Orazio, i Giovanni Simonetti. "Fusion Imaging in Nuclear Medicine—Applications of Dual-Modality Systems in Oncology". Cancer Biotherapy and Radiopharmaceuticals 19, nr 1 (luty 2004): 1–10. http://dx.doi.org/10.1089/108497804773391621.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Evans, A. "Breast Imaging Reporting and Data Systems". Breast 3, nr 2 (czerwiec 1994): 132. http://dx.doi.org/10.1016/0960-9776(94)90019-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Rivers, J., i I. Smith. "Performance Variation in Cardiac Imaging Systems". Heart, Lung and Circulation 16 (styczeń 2007): S52—S53. http://dx.doi.org/10.1016/j.hlc.2007.06.135.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Cicinelli, Maria Vittoria, Michele Cavalleri, Maria Brambati, Rosangela Lattanzio i Francesco Bandello. "New imaging systems in diabetic retinopathy". Acta Diabetologica 56, nr 9 (15.06.2019): 981–94. http://dx.doi.org/10.1007/s00592-019-01373-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Ferrari, Victor A., Brian Whitman, James C. Blankenship, Matthew J. Budoff, Marco Costa, Neil J. Weissman i Manuel D. Cerqueira. "Cardiovascular Imaging Payment and Reimbursement Systems". JACC: Cardiovascular Imaging 7, nr 3 (marzec 2014): 324–32. http://dx.doi.org/10.1016/j.jcmg.2014.01.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

SASAGAKI, MICHIHIRO, MITSUHIRO MATSUMOTO i YOSHINOBU MORI. "CR PORTAL IMAGING : A LINAC GRAPHY USING STORAGE PHOSPHOR IMAGING SYSTEMS". Japanese Journal of Radiological Technology 48, nr 7 (1992): 984–90. http://dx.doi.org/10.6009/jjrt.kj00003534082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

MATSUMOTO, MITSUHIRO, MICHIHIRO SASAGAKI i YOSHINOBU MORI. "CR PORTAL IMAGING : A LINAC GRAPHY BY STORAGE PHOSPHOR IMAGING SYSTEMS". Japanese Journal of Radiological Technology 47, nr 4 (1991): 627–29. http://dx.doi.org/10.6009/jjrt.kj00003500111.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Crommelin, Daan J. A., Gert Storm i Peter Luijten. "‘Personalised medicine’ through ‘personalised medicines’: Time to integrate advanced, non-invasive imaging approaches and smart drug delivery systems". International Journal of Pharmaceutics 415, nr 1-2 (sierpień 2011): 5–8. http://dx.doi.org/10.1016/j.ijpharm.2011.02.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

&NA;. "Expert systems - a role in nuclear medicine?" Nuclear Medicine Communications 12, nr 7 (lipiec 1991): 565–68. http://dx.doi.org/10.1097/00006231-199107000-00001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Bilge, Sedat, Attila Aydin i Mehmet Eryilmaz. "Endotracheal intubation with tactical fiberoptic imaging systems". American Journal of Emergency Medicine 34, nr 3 (marzec 2016): 664–65. http://dx.doi.org/10.1016/j.ajem.2015.12.061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Tez, Selda, i Mesut Tez. "Imaging as a Complex Systems Science". Radiology 249, nr 3 (grudzień 2008): 1083. http://dx.doi.org/10.1148/radiol.2493081289.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Wilson, T. "Three-dimensional imaging in confocal systems". Journal of Microscopy 153, nr 2 (luty 1989): 161–69. http://dx.doi.org/10.1111/j.1365-2818.1989.tb00556.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Alavi, Abass, Thomas J. Werner, Ewa Ł. Stępień i Pawel Moskal. "Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine". Bio-Algorithms and Med-Systems 17, nr 4 (1.12.2021): 203–12. http://dx.doi.org/10.1515/bams-2021-0186.

Pełny tekst źródła
Streszczenie:
Abstract Positron emission tomography (PET) imaging is the most quantitative modality for assessing disease activity at the molecular and cellular levels, and therefore, it allows monitoring its course and determining the efficacy of various therapeutic interventions. In this scientific communication, we describe the unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. We emphasize the critical importance of the development and synthesis of novel radiotracers (starting from the enormous impact of F-Fluorodeouxyglucose (FDG) introduced by investigators at the University of Pennsylvania (PENN)) and PET instrumentation. These innovations have led to the total-body PET systems enabling dynamic and parametric molecular imaging of all organs in the body simultaneously. We also present our perspectives for future development of molecular imaging by multiphoton PET systems that will enable users to extract substantial information (owing to the evolving role of positronium imaging) about the related molecular and biological bases of various disorders, which are unachievable by the current PET imaging techniques.
Style APA, Harvard, Vancouver, ISO itp.
34

Glasenapp, A., A. Hess i J. T. Thackeray. "Molecular imaging in nuclear cardiology: Pathways to individual precision medicine". Journal of Nuclear Cardiology 27, nr 6 (6.09.2020): 2195–201. http://dx.doi.org/10.1007/s12350-020-02319-6.

Pełny tekst źródła
Streszczenie:
AbstractGrowth of molecular imaging bears potential to transform nuclear cardiology from a primarily diagnostic method to a precision medicine tool. Molecular targets amenable for imaging and therapeutic intervention are particularly promising to facilitate risk stratification, patient selection and exquisite guidance of novel therapies, and interrogation of systems-based interorgan communication. Non-invasive visualization of pathobiology provides valuable insights into the progression of disease and response to treatment. Specifically, inflammation, fibrosis, and neurohormonal signaling, central to the progression of cardiovascular disease and emerging therapeutic strategies, have been investigated by molecular imaging. As the number of radioligands grows, careful investigation of the binding properties and added-value of imaging should be prioritized to identify high-potential probes and facilitate translation to clinical applications. In this review, we discuss the current state of molecular imaging in cardiovascular medicine, and the challenges and opportunities ahead for cardiovascular molecular imaging to navigate the path from diagnosis to prognosis to personalized medicine.
Style APA, Harvard, Vancouver, ISO itp.
35

Krupinski, Elizabeth A., i Yulei Jiang. "Anniversary Paper: Evaluation of medical imaging systems". Medical Physics 35, nr 2 (28.01.2008): 645–59. http://dx.doi.org/10.1118/1.2830376.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Shrestha, Raju, i Jon Yngve Hardeberg. "Evaluation and comparison of multispectral imaging systems". Color and Imaging Conference 22, nr 1 (3.11.2014): 107–12. http://dx.doi.org/10.2352/cic.2014.22.1.art00018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Sung, Myong-Hee, i James G. McNally. "Live cell imaging and systems biology". Wiley Interdisciplinary Reviews: Systems Biology and Medicine 3, nr 2 (20.08.2010): 167–82. http://dx.doi.org/10.1002/wsbm.108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Cheng, J. X., i X. S. Xie. "Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine". Science 350, nr 6264 (26.11.2015): aaa8870. http://dx.doi.org/10.1126/science.aaa8870.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Zanzonico, Pat. "Principles of Nuclear Medicine Imaging: Planar, SPECT, PET, Multi-modality, and Autoradiography Systems". Radiation Research 177, nr 4 (kwiecień 2012): 349–64. http://dx.doi.org/10.1667/rr2577.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Cruite, Irene, An Tang i Claude B. Sirlin. "Imaging-Based Diagnostic Systems for Hepatocellular Carcinoma". American Journal of Roentgenology 201, nr 1 (lipiec 2013): 41–55. http://dx.doi.org/10.2214/ajr.13.10570.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Fox, Martin D. "31. Microcomputer Based Imaging Systems in Radiography". Investigative Radiology 22, nr 9 (wrzesień 1987): S8. http://dx.doi.org/10.1097/00004424-198709000-00047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Richard, S., i J. H. Siewerdsen. "Optimization of dual-energy imaging systems using generalized NEQ and imaging task". Medical Physics 34, nr 1 (15.12.2006): 127–39. http://dx.doi.org/10.1118/1.2400620.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Maslebu, Giner, i Suryasatriya Trihandaru. "The Application of Nuclear Medicine". Indonesian Journal of Physics and Nuclear Applications 1, nr 2 (30.06.2016): 81. http://dx.doi.org/10.24246/ijpna.v1i2.81-84.

Pełny tekst źródła
Streszczenie:
Currently, the practice of nuclear medicine in modern countries comprises a large number of procedures. It is applied to study function of organs/body systems, to visualize, to characterize, and to quantify the functional state of lesions and for targeted radionuclide therapy. This overview presents all kinds of application in nuclear medicine services. Instrumentation and radioactive/radiolabeled substances are the basic components for application. Biotechnology contributes to the development and production of biomolecules used in radiopharmaceuticals. As a diagnostic modality, imaging depicts radioactivity distribution as a function of time. Hybrid imaging provides more precise localization and definition of le-sions as well as molecular imaging cross validation. Counting tests study invivo<br />organ functions externally or assess analytes in the biologic samples. Radiopharmaceutical therapy can be applied directly into the lesion or targeted systemically. Nanotechnology facilitates targeting and opens the development of bimodal techniques. In addition, neutron application contributes to the advancement of nuclear medicine services, such as neutron activation analysis, neutron teletherapy and neutron capture therapy.
Style APA, Harvard, Vancouver, ISO itp.
44

Glenn, Marcus E. "Image compression for medical imaging systems". Journal of Medical Systems 11, nr 2-3 (czerwiec 1987): 149–56. http://dx.doi.org/10.1007/bf00992349.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Gallot, Guilhem. "Terahertz sensing in biology and medicine". Photoniques, nr 101 (marzec 2020): 53–58. http://dx.doi.org/10.1051/photon/202010153.

Pełny tekst źródła
Streszczenie:
Terahertz radiation offers new contrasts with biological systems, without markers or staining, at the molecular, cellular or tissue level. Thanks to technological advances, it is increasingly emerging as a solution of choice for directly probing the interaction with molecules and biological solutions. Applications range from dynamics of biological molecules to imaging of cancerous tissues, including ion, protein and membrane sensors.
Style APA, Harvard, Vancouver, ISO itp.
46

Barneveld Binkhuysen, F. H. "Picture Archiving and Communication Systems (PACS) in Medicine". European Journal of Radiology 14, nr 1 (styczeń 1992): 78–79. http://dx.doi.org/10.1016/0720-048x(92)90070-p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

TODD-POKROPEK, A., E. VAURAMO, P. COSGRIFF, I. SIPPO-TUJUNEN i K. BRITTON. "User requirements for information systems in nuclear medicine". Nuclear Medicine Communications 13, nr 1 (1992): 299–305. http://dx.doi.org/10.1097/00006231-199205000-00002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Kim, Joong, i Jae Lee. "Recent Advances in Hybrid Molecular Imaging Systems". Seminars in Musculoskeletal Radiology 18, nr 02 (8.04.2014): 103–22. http://dx.doi.org/10.1055/s-0034-1371014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

MacDonald, Scott A., C. Grant Willson i Jean M. J. Frechet. "Chemical Amplification in High-Resolution Imaging Systems". Accounts of Chemical Research 27, nr 6 (czerwiec 1994): 151–58. http://dx.doi.org/10.1021/ar00042a001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Mafee, Mahmood F., Mark Rapoport, Afshin Karimi, Sameer A. Ansari i Jay Shah. "Orbital and Ocular Imaging Using 3- and 1.5-T MR Imaging Systems". Neuroimaging Clinics of North America 15, nr 1 (luty 2005): 1–21. http://dx.doi.org/10.1016/j.nic.2005.02.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii